MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Unicode version

Theorem fsumdvdsmul 20451
Description: Product of two divisor sums. (This is also the main part of the proof that " sum_ k  ||  N F ( k ) is a multiplicative function if  F is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1  |-  ( ph  ->  M  e.  NN )
dvdsmulf1o.2  |-  ( ph  ->  N  e.  NN )
dvdsmulf1o.3  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
dvdsmulf1o.x  |-  X  =  { x  e.  NN  |  x  ||  M }
dvdsmulf1o.y  |-  Y  =  { x  e.  NN  |  x  ||  N }
dvdsmulf1o.z  |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }
fsumdvdsmul.4  |-  ( (
ph  /\  j  e.  X )  ->  A  e.  CC )
fsumdvdsmul.5  |-  ( (
ph  /\  k  e.  Y )  ->  B  e.  CC )
fsumdvdsmul.6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  -> 
( A  x.  B
)  =  D )
fsumdvdsmul.7  |-  ( i  =  ( j  x.  k )  ->  C  =  D )
Assertion
Ref Expression
fsumdvdsmul  |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  = 
sum_ i  e.  Z  C )
Distinct variable groups:    A, k    D, i    x, M    x, N    i, j, k, X    B, j    C, j, k   
i, Y, j, k   
i, Z, j    x, i, j, k    ph, i,
j, k
Allowed substitution hints:    ph( x)    A( x, i, j)    B( x, i, k)    C( x, i)    D( x, j, k)    M( i, j, k)    N( i, j, k)    X( x)    Y( x)    Z( x, k)

Proof of Theorem fsumdvdsmul
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11051 . . . 4  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
2 dvdsmulf1o.x . . . . 5  |-  X  =  { x  e.  NN  |  x  ||  M }
3 dvdsmulf1o.1 . . . . . 6  |-  ( ph  ->  M  e.  NN )
4 sgmss 20360 . . . . . 6  |-  ( M  e.  NN  ->  { x  e.  NN  |  x  ||  M }  C_  ( 1 ... M ) )
53, 4syl 15 . . . . 5  |-  ( ph  ->  { x  e.  NN  |  x  ||  M }  C_  ( 1 ... M
) )
62, 5syl5eqss 3235 . . . 4  |-  ( ph  ->  X  C_  ( 1 ... M ) )
7 ssfi 7099 . . . 4  |-  ( ( ( 1 ... M
)  e.  Fin  /\  X  C_  ( 1 ... M ) )  ->  X  e.  Fin )
81, 6, 7syl2anc 642 . . 3  |-  ( ph  ->  X  e.  Fin )
9 fzfid 11051 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
10 dvdsmulf1o.y . . . . . 6  |-  Y  =  { x  e.  NN  |  x  ||  N }
11 dvdsmulf1o.2 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
12 sgmss 20360 . . . . . . 7  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
1311, 12syl 15 . . . . . 6  |-  ( ph  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )
1410, 13syl5eqss 3235 . . . . 5  |-  ( ph  ->  Y  C_  ( 1 ... N ) )
15 ssfi 7099 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  Y  C_  ( 1 ... N ) )  ->  Y  e.  Fin )
169, 14, 15syl2anc 642 . . . 4  |-  ( ph  ->  Y  e.  Fin )
17 fsumdvdsmul.5 . . . 4  |-  ( (
ph  /\  k  e.  Y )  ->  B  e.  CC )
1816, 17fsumcl 12222 . . 3  |-  ( ph  -> 
sum_ k  e.  Y  B  e.  CC )
19 fsumdvdsmul.4 . . 3  |-  ( (
ph  /\  j  e.  X )  ->  A  e.  CC )
208, 18, 19fsummulc1 12263 . 2  |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  = 
sum_ j  e.  X  ( A  x.  sum_ k  e.  Y  B )
)
2116adantr 451 . . . . 5  |-  ( (
ph  /\  j  e.  X )  ->  Y  e.  Fin )
2217adantlr 695 . . . . 5  |-  ( ( ( ph  /\  j  e.  X )  /\  k  e.  Y )  ->  B  e.  CC )
2321, 19, 22fsummulc2 12262 . . . 4  |-  ( (
ph  /\  j  e.  X )  ->  ( A  x.  sum_ k  e.  Y  B )  = 
sum_ k  e.  Y  ( A  x.  B
) )
24 fsumdvdsmul.6 . . . . . 6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  -> 
( A  x.  B
)  =  D )
2524anassrs 629 . . . . 5  |-  ( ( ( ph  /\  j  e.  X )  /\  k  e.  Y )  ->  ( A  x.  B )  =  D )
2625sumeq2dv 12192 . . . 4  |-  ( (
ph  /\  j  e.  X )  ->  sum_ k  e.  Y  ( A  x.  B )  =  sum_ k  e.  Y  D
)
2723, 26eqtrd 2328 . . 3  |-  ( (
ph  /\  j  e.  X )  ->  ( A  x.  sum_ k  e.  Y  B )  = 
sum_ k  e.  Y  D )
2827sumeq2dv 12192 . 2  |-  ( ph  -> 
sum_ j  e.  X  ( A  x.  sum_ k  e.  Y  B )  =  sum_ j  e.  X  sum_ k  e.  Y  D
)
29 fveq2 5541 . . . . . . 7  |-  ( z  =  <. j ,  k
>.  ->  (  x.  `  z )  =  (  x.  `  <. j ,  k >. )
)
30 df-ov 5877 . . . . . . 7  |-  ( j  x.  k )  =  (  x.  `  <. j ,  k >. )
3129, 30syl6eqr 2346 . . . . . 6  |-  ( z  =  <. j ,  k
>.  ->  (  x.  `  z )  =  ( j  x.  k ) )
3231csbeq1d 3100 . . . . 5  |-  ( z  =  <. j ,  k
>.  ->  [_ (  x.  `  z )  /  i ]_ C  =  [_ (
j  x.  k )  /  i ]_ C
)
33 ovex 5899 . . . . . 6  |-  ( j  x.  k )  e. 
_V
34 nfcv 2432 . . . . . 6  |-  F/_ i D
35 fsumdvdsmul.7 . . . . . 6  |-  ( i  =  ( j  x.  k )  ->  C  =  D )
3633, 34, 35csbief 3135 . . . . 5  |-  [_ (
j  x.  k )  /  i ]_ C  =  D
3732, 36syl6eq 2344 . . . 4  |-  ( z  =  <. j ,  k
>.  ->  [_ (  x.  `  z )  /  i ]_ C  =  D
)
3819adantrr 697 . . . . . 6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  A  e.  CC )
3917adantrl 696 . . . . . 6  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  B  e.  CC )
4038, 39mulcld 8871 . . . . 5  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  -> 
( A  x.  B
)  e.  CC )
4124, 40eqeltrrd 2371 . . . 4  |-  ( (
ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  D  e.  CC )
4237, 8, 16, 41fsumxp 12251 . . 3  |-  ( ph  -> 
sum_ j  e.  X  sum_ k  e.  Y  D  =  sum_ z  e.  ( X  X.  Y )
[_ (  x.  `  z )  /  i ]_ C )
43 nfcv 2432 . . . . 5  |-  F/_ w C
44 nfcsb1v 3126 . . . . 5  |-  F/_ i [_ w  /  i ]_ C
45 csbeq1a 3102 . . . . 5  |-  ( i  =  w  ->  C  =  [_ w  /  i ]_ C )
4643, 44, 45cbvsumi 12186 . . . 4  |-  sum_ i  e.  Z  C  =  sum_ w  e.  Z  [_ w  /  i ]_ C
47 csbeq1 3097 . . . . 5  |-  ( w  =  (  x.  `  z )  ->  [_ w  /  i ]_ C  =  [_ (  x.  `  z )  /  i ]_ C )
48 xpfi 7144 . . . . . 6  |-  ( ( X  e.  Fin  /\  Y  e.  Fin )  ->  ( X  X.  Y
)  e.  Fin )
498, 16, 48syl2anc 642 . . . . 5  |-  ( ph  ->  ( X  X.  Y
)  e.  Fin )
50 dvdsmulf1o.3 . . . . . 6  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
51 dvdsmulf1o.z . . . . . 6  |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }
523, 11, 50, 2, 10, 51dvdsmulf1o 20450 . . . . 5  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-onto-> Z )
53 fvres 5558 . . . . . 6  |-  ( z  e.  ( X  X.  Y )  ->  (
(  x.  |`  ( X  X.  Y ) ) `
 z )  =  (  x.  `  z
) )
5453adantl 452 . . . . 5  |-  ( (
ph  /\  z  e.  ( X  X.  Y
) )  ->  (
(  x.  |`  ( X  X.  Y ) ) `
 z )  =  (  x.  `  z
) )
5541ralrimivva 2648 . . . . . . . 8  |-  ( ph  ->  A. j  e.  X  A. k  e.  Y  D  e.  CC )
5637eleq1d 2362 . . . . . . . . 9  |-  ( z  =  <. j ,  k
>.  ->  ( [_ (  x.  `  z )  / 
i ]_ C  e.  CC  <->  D  e.  CC ) )
5756ralxp 4843 . . . . . . . 8  |-  ( A. z  e.  ( X  X.  Y ) [_ (  x.  `  z )  / 
i ]_ C  e.  CC  <->  A. j  e.  X  A. k  e.  Y  D  e.  CC )
5855, 57sylibr 203 . . . . . . 7  |-  ( ph  ->  A. z  e.  ( X  X.  Y )
[_ (  x.  `  z )  /  i ]_ C  e.  CC )
59 ax-mulf 8833 . . . . . . . . . 10  |-  x.  :
( CC  X.  CC )
--> CC
60 ffn 5405 . . . . . . . . . 10  |-  (  x.  : ( CC  X.  CC ) --> CC  ->  x.  Fn  ( CC  X.  CC ) )
6159, 60ax-mp 8 . . . . . . . . 9  |-  x.  Fn  ( CC  X.  CC )
62 ssrab2 3271 . . . . . . . . . . . 12  |-  { x  e.  NN  |  x  ||  M }  C_  NN
632, 62eqsstri 3221 . . . . . . . . . . 11  |-  X  C_  NN
64 nnsscn 9767 . . . . . . . . . . 11  |-  NN  C_  CC
6563, 64sstri 3201 . . . . . . . . . 10  |-  X  C_  CC
66 ssrab2 3271 . . . . . . . . . . . 12  |-  { x  e.  NN  |  x  ||  N }  C_  NN
6710, 66eqsstri 3221 . . . . . . . . . . 11  |-  Y  C_  NN
6867, 64sstri 3201 . . . . . . . . . 10  |-  Y  C_  CC
69 xpss12 4808 . . . . . . . . . 10  |-  ( ( X  C_  CC  /\  Y  C_  CC )  ->  ( X  X.  Y )  C_  ( CC  X.  CC ) )
7065, 68, 69mp2an 653 . . . . . . . . 9  |-  ( X  X.  Y )  C_  ( CC  X.  CC )
7147eleq1d 2362 . . . . . . . . . 10  |-  ( w  =  (  x.  `  z )  ->  ( [_ w  /  i ]_ C  e.  CC  <->  [_ (  x.  `  z
)  /  i ]_ C  e.  CC )
)
7271ralima 5774 . . . . . . . . 9  |-  ( (  x.  Fn  ( CC 
X.  CC )  /\  ( X  X.  Y
)  C_  ( CC  X.  CC ) )  -> 
( A. w  e.  (  x.  " ( X  X.  Y ) )
[_ w  /  i ]_ C  e.  CC  <->  A. z  e.  ( X  X.  Y ) [_ (  x.  `  z )  /  i ]_ C  e.  CC ) )
7361, 70, 72mp2an 653 . . . . . . . 8  |-  ( A. w  e.  (  x.  " ( X  X.  Y
) ) [_ w  /  i ]_ C  e.  CC  <->  A. z  e.  ( X  X.  Y )
[_ (  x.  `  z )  /  i ]_ C  e.  CC )
74 df-ima 4718 . . . . . . . . . 10  |-  (  x.  " ( X  X.  Y ) )  =  ran  (  x.  |`  ( X  X.  Y ) )
75 f1ofo 5495 . . . . . . . . . . 11  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
)
-1-1-onto-> Z  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Z )
76 forn 5470 . . . . . . . . . . 11  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -onto-> Z  ->  ran  (  x.  |`  ( X  X.  Y ) )  =  Z )
7752, 75, 763syl 18 . . . . . . . . . 10  |-  ( ph  ->  ran  (  x.  |`  ( X  X.  Y ) )  =  Z )
7874, 77syl5eq 2340 . . . . . . . . 9  |-  ( ph  ->  (  x.  " ( X  X.  Y ) )  =  Z )
7978raleqdv 2755 . . . . . . . 8  |-  ( ph  ->  ( A. w  e.  (  x.  " ( X  X.  Y ) )
[_ w  /  i ]_ C  e.  CC  <->  A. w  e.  Z  [_ w  /  i ]_ C  e.  CC ) )
8073, 79syl5bbr 250 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  ( X  X.  Y
) [_ (  x.  `  z )  /  i ]_ C  e.  CC  <->  A. w  e.  Z  [_ w  /  i ]_ C  e.  CC ) )
8158, 80mpbid 201 . . . . . 6  |-  ( ph  ->  A. w  e.  Z  [_ w  /  i ]_ C  e.  CC )
8281r19.21bi 2654 . . . . 5  |-  ( (
ph  /\  w  e.  Z )  ->  [_ w  /  i ]_ C  e.  CC )
8347, 49, 52, 54, 82fsumf1o 12212 . . . 4  |-  ( ph  -> 
sum_ w  e.  Z  [_ w  /  i ]_ C  =  sum_ z  e.  ( X  X.  Y
) [_ (  x.  `  z )  /  i ]_ C )
8446, 83syl5eq 2340 . . 3  |-  ( ph  -> 
sum_ i  e.  Z  C  =  sum_ z  e.  ( X  X.  Y
) [_ (  x.  `  z )  /  i ]_ C )
8542, 84eqtr4d 2331 . 2  |-  ( ph  -> 
sum_ j  e.  X  sum_ k  e.  Y  D  =  sum_ i  e.  Z  C )
8620, 28, 853eqtrd 2332 1  |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  = 
sum_ i  e.  Z  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   [_csb 3094    C_ wss 3165   <.cop 3656   class class class wbr 4039    X. cxp 4703   ran crn 4706    |` cres 4707   "cima 4708    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Fincfn 6879   CCcc 8751   1c1 8754    x. cmul 8758   NNcn 9762   ...cfz 10798   sum_csu 12174    || cdivides 12547    gcd cgcd 12701
This theorem is referenced by:  sgmmul  20456  dchrisum0fmul  20671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702
  Copyright terms: Public domain W3C validator