Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumkthpow Unicode version

Theorem fsumkthpow 24200
Description: A closed-form expression for the sum of  K-th powers. (Contributed by Scott Fenton, 16-May-2014.) (Revised by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
fsumkthpow  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( n ^ K )  =  ( ( ( ( K  +  1 ) BernPoly  ( M  + 
1 ) )  -  ( ( K  + 
1 ) BernPoly  0 ) )  /  ( K  +  1 ) ) )
Distinct variable groups:    n, K    n, M

Proof of Theorem fsumkthpow
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 11030 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( 0 ... M
)  e.  Fin )
2 elfzelz 10793 . . . . . 6  |-  ( n  e.  ( 0 ... M )  ->  n  e.  ZZ )
32zcnd 10113 . . . . 5  |-  ( n  e.  ( 0 ... M )  ->  n  e.  CC )
4 simpl 443 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  K  e.  NN0 )
5 expcl 11116 . . . . 5  |-  ( ( n  e.  CC  /\  K  e.  NN0 )  -> 
( n ^ K
)  e.  CC )
63, 4, 5syl2anr 464 . . . 4  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( n ^ K )  e.  CC )
71, 6fsumcl 12201 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( n ^ K )  e.  CC )
8 nn0p1nn 9998 . . . . 5  |-  ( K  e.  NN0  ->  ( K  +  1 )  e.  NN )
98adantr 451 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  +  1 )  e.  NN )
109nncnd 9757 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  +  1 )  e.  CC )
119nnne0d 9785 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  +  1 )  =/=  0 )
127, 10, 11divcan3d 9536 . 2  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( K  +  1 )  x. 
sum_ n  e.  (
0 ... M ) ( n ^ K ) )  /  ( K  +  1 ) )  =  sum_ n  e.  ( 0 ... M ) ( n ^ K
) )
131, 10, 6fsummulc2 12241 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  + 
1 )  x.  sum_ n  e.  ( 0 ... M ) ( n ^ K ) )  =  sum_ n  e.  ( 0 ... M ) ( ( K  + 
1 )  x.  (
n ^ K ) ) )
14 bpolydif 24199 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  NN  /\  n  e.  CC )  ->  ( ( ( K  +  1 ) BernPoly  (
n  +  1 ) )  -  ( ( K  +  1 ) BernPoly  n ) )  =  ( ( K  + 
1 )  x.  (
n ^ ( ( K  +  1 )  -  1 ) ) ) )
159, 3, 14syl2an 463 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( ( K  +  1 ) BernPoly  ( n  +  1
) )  -  (
( K  +  1 ) BernPoly  n ) )  =  ( ( K  + 
1 )  x.  (
n ^ ( ( K  +  1 )  -  1 ) ) ) )
16 nn0cn 9970 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
1716ad2antrr 706 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  K  e.  CC )
18 ax-1cn 8790 . . . . . . . . 9  |-  1  e.  CC
19 pncan 9052 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
2017, 18, 19sylancl 643 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( K  +  1 )  - 
1 )  =  K )
2120oveq2d 5835 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( n ^
( ( K  + 
1 )  -  1 ) )  =  ( n ^ K ) )
2221oveq2d 5835 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( K  +  1 )  x.  ( n ^ (
( K  +  1 )  -  1 ) ) )  =  ( ( K  +  1 )  x.  ( n ^ K ) ) )
2315, 22eqtrd 2315 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( ( K  +  1 ) BernPoly  ( n  +  1
) )  -  (
( K  +  1 ) BernPoly  n ) )  =  ( ( K  + 
1 )  x.  (
n ^ K ) ) )
2423sumeq2dv 12171 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( ( ( K  + 
1 ) BernPoly  ( n  +  1 ) )  -  ( ( K  +  1 ) BernPoly  n
) )  =  sum_ n  e.  ( 0 ... M ) ( ( K  +  1 )  x.  ( n ^ K ) ) )
25 oveq2 5827 . . . . 5  |-  ( k  =  n  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  n )
)
26 oveq2 5827 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  ( n  +  1 ) ) )
27 oveq2 5827 . . . . 5  |-  ( k  =  0  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  0 ) )
28 oveq2 5827 . . . . 5  |-  ( k  =  ( M  + 
1 )  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  ( M  +  1 ) ) )
29 nn0z 10041 . . . . . 6  |-  ( M  e.  NN0  ->  M  e.  ZZ )
3029adantl 452 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  M  e.  ZZ )
31 peano2nn0 9999 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
3231adantl 452 . . . . . 6  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  +  1 )  e.  NN0 )
33 nn0uz 10257 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
3432, 33syl6eleq 2373 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
35 peano2nn0 9999 . . . . . . 7  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
3635ad2antrr 706 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  ( K  + 
1 )  e.  NN0 )
37 elfznn0 10817 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( M  +  1 ) )  ->  k  e.  NN0 )
3837adantl 452 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  k  e.  NN0 )
3938nn0cnd 10015 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  k  e.  CC )
40 bpolycl 24196 . . . . . 6  |-  ( ( ( K  +  1 )  e.  NN0  /\  k  e.  CC )  ->  ( ( K  + 
1 ) BernPoly  k )  e.  CC )
4136, 39, 40syl2anc 642 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  ( ( K  +  1 ) BernPoly  k
)  e.  CC )
4225, 26, 27, 28, 30, 34, 41fsumtscop2 12258 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( ( ( K  + 
1 ) BernPoly  ( n  +  1 ) )  -  ( ( K  +  1 ) BernPoly  n
) )  =  ( ( ( K  + 
1 ) BernPoly  ( M  +  1 ) )  -  ( ( K  +  1 ) BernPoly  0
) ) )
4313, 24, 423eqtr2d 2321 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  + 
1 )  x.  sum_ n  e.  ( 0 ... M ) ( n ^ K ) )  =  ( ( ( K  +  1 ) BernPoly  ( M  +  1
) )  -  (
( K  +  1 ) BernPoly  0 ) ) )
4443oveq1d 5834 . 2  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( K  +  1 )  x. 
sum_ n  e.  (
0 ... M ) ( n ^ K ) )  /  ( K  +  1 ) )  =  ( ( ( ( K  +  1 ) BernPoly  ( M  + 
1 ) )  -  ( ( K  + 
1 ) BernPoly  0 ) )  /  ( K  +  1 ) ) )
4512, 44eqtr3d 2317 1  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( n ^ K )  =  ( ( ( ( K  +  1 ) BernPoly  ( M  + 
1 ) )  -  ( ( K  + 
1 ) BernPoly  0 ) )  /  ( K  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   ` cfv 5220  (class class class)co 5819   CCcc 8730   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    - cmin 9032    / cdiv 9418   NNcn 9741   NN0cn0 9960   ZZcz 10019   ZZ>=cuz 10225   ...cfz 10777   ^cexp 11099   sum_csu 12153   BernPoly cbp 24190
This theorem is referenced by:  fsumcube  24204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-fz 10778  df-fzo 10866  df-seq 11042  df-exp 11100  df-fac 11284  df-bc 11311  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-sum 12154  df-pred 23571  df-bpoly 24191
  Copyright terms: Public domain W3C validator