Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumkthpow Unicode version

Theorem fsumkthpow 24793
Description: A closed-form expression for the sum of  K-th powers. (Contributed by Scott Fenton, 16-May-2014.) (Revised by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
fsumkthpow  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( n ^ K )  =  ( ( ( ( K  +  1 ) BernPoly  ( M  + 
1 ) )  -  ( ( K  + 
1 ) BernPoly  0 ) )  /  ( K  +  1 ) ) )
Distinct variable groups:    n, K    n, M

Proof of Theorem fsumkthpow
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 11037 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( 0 ... M
)  e.  Fin )
2 elfzelz 10800 . . . . . 6  |-  ( n  e.  ( 0 ... M )  ->  n  e.  ZZ )
32zcnd 10120 . . . . 5  |-  ( n  e.  ( 0 ... M )  ->  n  e.  CC )
4 simpl 443 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  K  e.  NN0 )
5 expcl 11123 . . . . 5  |-  ( ( n  e.  CC  /\  K  e.  NN0 )  -> 
( n ^ K
)  e.  CC )
63, 4, 5syl2anr 464 . . . 4  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( n ^ K )  e.  CC )
71, 6fsumcl 12208 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( n ^ K )  e.  CC )
8 nn0p1nn 10005 . . . . 5  |-  ( K  e.  NN0  ->  ( K  +  1 )  e.  NN )
98adantr 451 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  +  1 )  e.  NN )
109nncnd 9764 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  +  1 )  e.  CC )
119nnne0d 9792 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  +  1 )  =/=  0 )
127, 10, 11divcan3d 9543 . 2  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( K  +  1 )  x. 
sum_ n  e.  (
0 ... M ) ( n ^ K ) )  /  ( K  +  1 ) )  =  sum_ n  e.  ( 0 ... M ) ( n ^ K
) )
131, 10, 6fsummulc2 12248 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  + 
1 )  x.  sum_ n  e.  ( 0 ... M ) ( n ^ K ) )  =  sum_ n  e.  ( 0 ... M ) ( ( K  + 
1 )  x.  (
n ^ K ) ) )
14 bpolydif 24792 . . . . . . 7  |-  ( ( ( K  +  1 )  e.  NN  /\  n  e.  CC )  ->  ( ( ( K  +  1 ) BernPoly  (
n  +  1 ) )  -  ( ( K  +  1 ) BernPoly  n ) )  =  ( ( K  + 
1 )  x.  (
n ^ ( ( K  +  1 )  -  1 ) ) ) )
159, 3, 14syl2an 463 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( ( K  +  1 ) BernPoly  ( n  +  1
) )  -  (
( K  +  1 ) BernPoly  n ) )  =  ( ( K  + 
1 )  x.  (
n ^ ( ( K  +  1 )  -  1 ) ) ) )
16 nn0cn 9977 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
1716ad2antrr 706 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  K  e.  CC )
18 ax-1cn 8797 . . . . . . . . 9  |-  1  e.  CC
19 pncan 9059 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
2017, 18, 19sylancl 643 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( K  +  1 )  - 
1 )  =  K )
2120oveq2d 5876 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( n ^
( ( K  + 
1 )  -  1 ) )  =  ( n ^ K ) )
2221oveq2d 5876 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( K  +  1 )  x.  ( n ^ (
( K  +  1 )  -  1 ) ) )  =  ( ( K  +  1 )  x.  ( n ^ K ) ) )
2315, 22eqtrd 2317 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  n  e.  (
0 ... M ) )  ->  ( ( ( K  +  1 ) BernPoly  ( n  +  1
) )  -  (
( K  +  1 ) BernPoly  n ) )  =  ( ( K  + 
1 )  x.  (
n ^ K ) ) )
2423sumeq2dv 12178 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( ( ( K  + 
1 ) BernPoly  ( n  +  1 ) )  -  ( ( K  +  1 ) BernPoly  n
) )  =  sum_ n  e.  ( 0 ... M ) ( ( K  +  1 )  x.  ( n ^ K ) ) )
25 oveq2 5868 . . . . 5  |-  ( k  =  n  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  n )
)
26 oveq2 5868 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  ( n  +  1 ) ) )
27 oveq2 5868 . . . . 5  |-  ( k  =  0  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  0 ) )
28 oveq2 5868 . . . . 5  |-  ( k  =  ( M  + 
1 )  ->  (
( K  +  1 ) BernPoly  k )  =  ( ( K  + 
1 ) BernPoly  ( M  +  1 ) ) )
29 nn0z 10048 . . . . . 6  |-  ( M  e.  NN0  ->  M  e.  ZZ )
3029adantl 452 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  M  e.  ZZ )
31 peano2nn0 10006 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
3231adantl 452 . . . . . 6  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  +  1 )  e.  NN0 )
33 nn0uz 10264 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
3432, 33syl6eleq 2375 . . . . 5  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
35 peano2nn0 10006 . . . . . . 7  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
3635ad2antrr 706 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  ( K  + 
1 )  e.  NN0 )
37 elfznn0 10824 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( M  +  1 ) )  ->  k  e.  NN0 )
3837adantl 452 . . . . . . 7  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  k  e.  NN0 )
3938nn0cnd 10022 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  k  e.  CC )
40 bpolycl 24789 . . . . . 6  |-  ( ( ( K  +  1 )  e.  NN0  /\  k  e.  CC )  ->  ( ( K  + 
1 ) BernPoly  k )  e.  CC )
4136, 39, 40syl2anc 642 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0 )  /\  k  e.  (
0 ... ( M  + 
1 ) ) )  ->  ( ( K  +  1 ) BernPoly  k
)  e.  CC )
4225, 26, 27, 28, 30, 34, 41fsumtscop2 12265 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( ( ( K  + 
1 ) BernPoly  ( n  +  1 ) )  -  ( ( K  +  1 ) BernPoly  n
) )  =  ( ( ( K  + 
1 ) BernPoly  ( M  +  1 ) )  -  ( ( K  +  1 ) BernPoly  0
) ) )
4313, 24, 423eqtr2d 2323 . . 3  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  + 
1 )  x.  sum_ n  e.  ( 0 ... M ) ( n ^ K ) )  =  ( ( ( K  +  1 ) BernPoly  ( M  +  1
) )  -  (
( K  +  1 ) BernPoly  0 ) ) )
4443oveq1d 5875 . 2  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( K  +  1 )  x. 
sum_ n  e.  (
0 ... M ) ( n ^ K ) )  /  ( K  +  1 ) )  =  ( ( ( ( K  +  1 ) BernPoly  ( M  + 
1 ) )  -  ( ( K  + 
1 ) BernPoly  0 ) )  /  ( K  +  1 ) ) )
4512, 44eqtr3d 2319 1  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  ->  sum_ n  e.  ( 0 ... M ) ( n ^ K )  =  ( ( ( ( K  +  1 ) BernPoly  ( M  + 
1 ) )  -  ( ( K  + 
1 ) BernPoly  0 ) )  /  ( K  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    - cmin 9039    / cdiv 9425   NNcn 9748   NN0cn0 9967   ZZcz 10026   ZZ>=cuz 10232   ...cfz 10784   ^cexp 11106   sum_csu 12160   BernPoly cbp 24783
This theorem is referenced by:  fsumcube  24797
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-pred 24170  df-bpoly 24784
  Copyright terms: Public domain W3C validator