MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumle Unicode version

Theorem fsumle 12259
Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumle.1  |-  ( ph  ->  A  e.  Fin )
fsumle.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumle.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
fsumle.4  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
Assertion
Ref Expression
fsumle  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fsumle
StepHypRef Expression
1 fsumle.1 . . . 4  |-  ( ph  ->  A  e.  Fin )
2 fsumle.3 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  RR )
3 fsumle.2 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
42, 3resubcld 9213 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  ( C  -  B )  e.  RR )
5 fsumle.4 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  B  <_  C )
62, 3subge0d 9364 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
0  <_  ( C  -  B )  <->  B  <_  C ) )
75, 6mpbird 223 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  ( C  -  B
) )
81, 4, 7fsumge0 12255 . . 3  |-  ( ph  ->  0  <_  sum_ k  e.  A  ( C  -  B ) )
92recnd 8863 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
103recnd 8863 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
111, 9, 10fsumsub 12252 . . 3  |-  ( ph  -> 
sum_ k  e.  A  ( C  -  B
)  =  ( sum_ k  e.  A  C  -  sum_ k  e.  A  B ) )
128, 11breqtrd 4049 . 2  |-  ( ph  ->  0  <_  ( sum_ k  e.  A  C  -  sum_ k  e.  A  B ) )
131, 2fsumrecl 12209 . . 3  |-  ( ph  -> 
sum_ k  e.  A  C  e.  RR )
141, 3fsumrecl 12209 . . 3  |-  ( ph  -> 
sum_ k  e.  A  B  e.  RR )
1513, 14subge0d 9364 . 2  |-  ( ph  ->  ( 0  <_  ( sum_ k  e.  A  C  -  sum_ k  e.  A  B )  <->  sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
)
1612, 15mpbid 201 1  |-  ( ph  -> 
sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1686   class class class wbr 4025  (class class class)co 5860   Fincfn 6865   RRcr 8738   0cc0 8739    <_ cle 8870    - cmin 9039   sum_csu 12160
This theorem is referenced by:  o1fsum  12273  climcndslem1  12310  climcndslem2  12311  mertenslem1  12342  ovoliunlem1  18863  ovolicc2lem4  18881  uniioombllem4  18943  dvfsumle  19370  dvfsumabs  19372  mtest  19783  abelthlem7  19816  birthdaylem3  20250  fsumharmonic  20307  ftalem1  20312  ftalem5  20316  basellem8  20327  chtleppi  20451  chpub  20461  logfaclbnd  20463  bposlem1  20525  chebbnd1lem1  20620  chtppilimlem1  20624  vmadivsum  20633  rplogsumlem1  20635  rplogsumlem2  20636  rpvmasumlem  20638  dchrisumlem2  20641  dchrmusum2  20645  dchrvmasumlem3  20650  dchrvmasumiflem1  20652  dchrisum0fno1  20662  dchrisum0lem1  20667  dchrisum0lem2a  20668  mudivsum  20681  mulogsumlem  20682  mulog2sumlem2  20686  vmalogdivsum2  20689  2vmadivsumlem  20691  selberglem2  20697  selbergb  20700  selberg2b  20703  chpdifbndlem1  20704  logdivbnd  20707  selberg3lem1  20708  selberg4lem1  20711  pntrlog2bndlem1  20728  pntrlog2bndlem2  20729  pntrlog2bndlem3  20730  pntrlog2bndlem5  20732  pntrlog2bndlem6  20734  pntpbnd2  20738  pntlemj  20754  geomcau  26486  stoweidlem11  27771  stoweidlem26  27786  stoweidlem38  27798  stoweidlem44  27804  stirlinglem12  27845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-ico 10664  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161
  Copyright terms: Public domain W3C validator