MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta Unicode version

Theorem fta 20850
Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
fta  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  ( F `  z )  =  0 )
Distinct variable groups:    z, F    z, S

Proof of Theorem fta
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . 4  |-  (coeff `  F )  =  (coeff `  F )
2 eqid 2435 . . . 4  |-  (deg `  F )  =  (deg
`  F )
3 simpl 444 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  F  e.  (Poly `  S ) )
4 simpr 448 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  (deg `  F
)  e.  NN )
5 eqid 2435 . . . 4  |-  if ( if ( 1  <_ 
s ,  s ,  1 )  <_  (
( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) ) ,  ( ( abs `  ( F `  0
) )  /  (
( abs `  (
(coeff `  F ) `  (deg `  F )
) )  /  2
) ) ,  if ( 1  <_  s ,  s ,  1 ) )  =  if ( if ( 1  <_  s ,  s ,  1 )  <_ 
( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) ) ,  ( ( abs `  ( F `  0
) )  /  (
( abs `  (
(coeff `  F ) `  (deg `  F )
) )  /  2
) ) ,  if ( 1  <_  s ,  s ,  1 ) )
6 eqid 2435 . . . 4  |-  ( ( abs `  ( F `
 0 ) )  /  ( ( abs `  ( (coeff `  F
) `  (deg `  F
) ) )  / 
2 ) )  =  ( ( abs `  ( F `  0 )
)  /  ( ( abs `  ( (coeff `  F ) `  (deg `  F ) ) )  /  2 ) )
71, 2, 3, 4, 5, 6ftalem2 20844 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. r  e.  RR+  A. y  e.  CC  (
r  <  ( abs `  y )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  y )
) ) )
8 simpll 731 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  F  e.  (Poly `  S )
)
9 simplr 732 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  (deg `  F )  e.  NN )
10 eqid 2435 . . . 4  |-  { s  e.  CC  |  ( abs `  s )  <_  r }  =  { s  e.  CC  |  ( abs `  s
)  <_  r }
11 eqid 2435 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
12 simprl 733 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  r  e.  RR+ )
13 simprr 734 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) )
14 fveq2 5719 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  y )  =  ( abs `  x
) )
1514breq2d 4216 . . . . . . 7  |-  ( y  =  x  ->  (
r  <  ( abs `  y )  <->  r  <  ( abs `  x ) ) )
16 fveq2 5719 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
1716fveq2d 5723 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( F `  y ) )  =  ( abs `  ( F `  x )
) )
1817breq2d 4216 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  y
) )  <->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
1915, 18imbi12d 312 . . . . . 6  |-  ( y  =  x  ->  (
( r  <  ( abs `  y )  -> 
( abs `  ( F `  0 )
)  <  ( abs `  ( F `  y
) ) )  <->  ( r  <  ( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) ) )
2019cbvralv 2924 . . . . 5  |-  ( A. y  e.  CC  (
r  <  ( abs `  y )  ->  ( abs `  ( F ` 
0 ) )  < 
( abs `  ( F `  y )
) )  <->  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
2113, 20sylib 189 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  A. x  e.  CC  ( r  < 
( abs `  x
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  x ) ) ) )
221, 2, 8, 9, 10, 11, 12, 21ftalem3 20845 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( r  e.  RR+  /\  A. y  e.  CC  ( r  < 
( abs `  y
)  ->  ( abs `  ( F `  0
) )  <  ( abs `  ( F `  y ) ) ) ) )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) )
237, 22rexlimddv 2826 . 2  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z ) )  <_ 
( abs `  ( F `  x )
) )
24 simpll 731 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  ->  F  e.  (Poly `  S
) )
25 simplr 732 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
(deg `  F )  e.  NN )
26 simprl 733 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
z  e.  CC )
27 simprr 734 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  -> 
( F `  z
)  =/=  0 )
281, 2, 24, 25, 26, 27ftalem7 20849 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  ( z  e.  CC  /\  ( F `
 z )  =/=  0 ) )  ->  -.  A. x  e.  CC  ( abs `  ( F `
 z ) )  <_  ( abs `  ( F `  x )
) )
2928expr 599 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  z  e.  CC )  ->  ( ( F `
 z )  =/=  0  ->  -.  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) ) ) )
3029necon4ad 2659 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  /\  z  e.  CC )  ->  ( A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  ( F `  z )  =  0 ) )
3130reximdva 2810 . 2  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  ( E. z  e.  CC  A. x  e.  CC  ( abs `  ( F `  z )
)  <_  ( abs `  ( F `  x
) )  ->  E. z  e.  CC  ( F `  z )  =  0 ) )
3223, 31mpd 15 1  |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e.  NN )  ->  E. z  e.  CC  ( F `  z )  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701   ifcif 3731   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   CCcc 8977   0cc0 8979   1c1 8980    < clt 9109    <_ cle 9110    / cdiv 9666   NNcn 9989   2c2 10038   RR+crp 10601   abscabs 12027   TopOpenctopn 13637  ℂfldccnfld 16691  Polycply 20091  coeffccoe 20093  degcdgr 20094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ioc 10910  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-mod 11239  df-seq 11312  df-exp 11371  df-fac 11555  df-bc 11582  df-hash 11607  df-shft 11870  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-limsup 12253  df-clim 12270  df-rlim 12271  df-sum 12468  df-ef 12658  df-sin 12660  df-cos 12661  df-pi 12663  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-mulg 14803  df-cntz 15104  df-cmn 15402  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-fbas 16687  df-fg 16688  df-cnfld 16692  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150  df-lp 17188  df-perf 17189  df-cn 17279  df-cnp 17280  df-haus 17367  df-cmp 17438  df-tx 17582  df-hmeo 17775  df-fil 17866  df-fm 17958  df-flim 17959  df-flf 17960  df-xms 18338  df-ms 18339  df-tms 18340  df-cncf 18896  df-0p 19550  df-limc 19741  df-dv 19742  df-ply 20095  df-idp 20096  df-coe 20097  df-dgr 20098  df-log 20442  df-cxp 20443
  Copyright terms: Public domain W3C validator