MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1 Unicode version

Theorem ftc1 19384
Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at  C with derivative  F ( C ) if the original function is continuous at  C. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L ^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
Assertion
Ref Expression
ftc1  |-  ( ph  ->  C ( RR  _D  G ) ( F `
 C ) )
Distinct variable groups:    x, t, C    t, D, x    t, A, x    t, B, x    ph, t, x    t, F, x    x, L
Allowed substitution hints:    G( x, t)    J( x, t)    K( x, t)    L( t)

Proof of Theorem ftc1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ftc1.j . . . . . . 7  |-  J  =  ( Lt  RR )
2 ftc1.l . . . . . . . 8  |-  L  =  ( TopOpen ` fld )
32tgioo2 18304 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( Lt  RR )
41, 3eqtr4i 2306 . . . . . 6  |-  J  =  ( topGen `  ran  (,) )
5 retop 18265 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  Top
64, 5eqeltri 2353 . . . . 5  |-  J  e. 
Top
76a1i 10 . . . 4  |-  ( ph  ->  J  e.  Top )
8 ftc1.a . . . . 5  |-  ( ph  ->  A  e.  RR )
9 ftc1.b . . . . 5  |-  ( ph  ->  B  e.  RR )
10 iccssre 10726 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
118, 9, 10syl2anc 642 . . . 4  |-  ( ph  ->  ( A [,] B
)  C_  RR )
12 iooretop 18270 . . . . . 6  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
1312, 4eleqtrri 2356 . . . . 5  |-  ( A (,) B )  e.  J
1413a1i 10 . . . 4  |-  ( ph  ->  ( A (,) B
)  e.  J )
15 ioossicc 10730 . . . . 5  |-  ( A (,) B )  C_  ( A [,] B )
1615a1i 10 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
17 uniretop 18266 . . . . . 6  |-  RR  =  U. ( topGen `  ran  (,) )
184unieqi 3837 . . . . . 6  |-  U. J  =  U. ( topGen `  ran  (,) )
1917, 18eqtr4i 2306 . . . . 5  |-  RR  =  U. J
2019ssntr 16790 . . . 4  |-  ( ( ( J  e.  Top  /\  ( A [,] B
)  C_  RR )  /\  ( ( A (,) B )  e.  J  /\  ( A (,) B
)  C_  ( A [,] B ) ) )  ->  ( A (,) B )  C_  (
( int `  J
) `  ( A [,] B ) ) )
217, 11, 14, 16, 20syl22anc 1183 . . 3  |-  ( ph  ->  ( A (,) B
)  C_  ( ( int `  J ) `  ( A [,] B ) ) )
22 ftc1.c . . 3  |-  ( ph  ->  C  e.  ( A (,) B ) )
2321, 22sseldd 3181 . 2  |-  ( ph  ->  C  e.  ( ( int `  J ) `
 ( A [,] B ) ) )
24 ftc1.g . . 3  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
25 ftc1.le . . 3  |-  ( ph  ->  A  <_  B )
26 ftc1.s . . 3  |-  ( ph  ->  ( A (,) B
)  C_  D )
27 ftc1.d . . 3  |-  ( ph  ->  D  C_  RR )
28 ftc1.i . . 3  |-  ( ph  ->  F  e.  L ^1 )
29 ftc1.f . . 3  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
30 ftc1.k . . 3  |-  K  =  ( Lt  D )
31 eqid 2283 . . 3  |-  ( z  e.  ( ( A [,] B )  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( ( A [,] B )  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )
3224, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2, 31ftc1lem6 19383 . 2  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  ( ( A [,] B ) 
\  { C }
)  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
33 ax-resscn 8789 . . . 4  |-  RR  C_  CC
3433a1i 10 . . 3  |-  ( ph  ->  RR  C_  CC )
3524, 8, 9, 25, 26, 27, 28, 22, 29, 1, 30, 2ftc1lem3 19380 . . . 4  |-  ( ph  ->  F : D --> CC )
3624, 8, 9, 25, 26, 27, 28, 35ftc1lem2 19378 . . 3  |-  ( ph  ->  G : ( A [,] B ) --> CC )
371, 2, 31, 34, 36, 11eldv 19243 . 2  |-  ( ph  ->  ( C ( RR 
_D  G ) ( F `  C )  <-> 
( C  e.  ( ( int `  J
) `  ( A [,] B ) )  /\  ( F `  C )  e.  ( ( z  e.  ( ( A [,] B )  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
3823, 32, 37mpbir2and 888 1  |-  ( ph  ->  C ( RR  _D  G ) ( F `
 C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    \ cdif 3149    C_ wss 3152   {csn 3640   U.cuni 3827   class class class wbr 4023    e. cmpt 4077   ran crn 4688   ` cfv 5220  (class class class)co 5819   CCcc 8730   RRcr 8731    <_ cle 8863    - cmin 9032    / cdiv 9418   (,)cioo 10651   [,]cicc 10654   ↾t crest 13320   TopOpenctopn 13321   topGenctg 13337  ℂfldccnfld 16372   Topctop 16626   intcnt 16749    CnP ccnp 16950   L ^1cibl 18967   S.citg 18968   lim CC climc 19207    _D cdv 19208
This theorem is referenced by:  ftc1cn  19385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cc 8056  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-ofr 6040  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10655  df-ioc 10656  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-rlim 11958  df-sum 12154  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-mulg 14487  df-cntz 14788  df-cmn 15086  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-ntr 16752  df-cn 16952  df-cnp 16953  df-cmp 17109  df-tx 17252  df-hmeo 17441  df-xms 17880  df-ms 17881  df-tms 17882  df-cncf 18377  df-ovol 18819  df-vol 18820  df-mbf 18970  df-itg1 18971  df-itg2 18972  df-ibl 18973  df-itg 18974  df-0p 19020  df-limc 19211  df-dv 19212
  Copyright terms: Public domain W3C validator