MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1cn Unicode version

Theorem ftc1cn 19406
Description: Strengthen the assumptions of ftc1 19405 to when the function  F is continuous on the entire interval  ( A ,  B ); in this case we can calculate  _D  G exactly. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1cn.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1cn.a  |-  ( ph  ->  A  e.  RR )
ftc1cn.b  |-  ( ph  ->  B  e.  RR )
ftc1cn.le  |-  ( ph  ->  A  <_  B )
ftc1cn.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
ftc1cn.i  |-  ( ph  ->  F  e.  L ^1 )
Assertion
Ref Expression
ftc1cn  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Distinct variable groups:    x, t, A    t, B, x    t, F, x    ph, t, x
Allowed substitution hints:    G( x, t)

Proof of Theorem ftc1cn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dvf 19273 . . . . 5  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
21a1i 10 . . . 4  |-  ( ph  ->  ( RR  _D  G
) : dom  ( RR  _D  G ) --> CC )
3 ffun 5407 . . . 4  |-  ( ( RR  _D  G ) : dom  ( RR 
_D  G ) --> CC 
->  Fun  ( RR  _D  G ) )
42, 3syl 15 . . 3  |-  ( ph  ->  Fun  ( RR  _D  G ) )
5 ax-resscn 8810 . . . . . . 7  |-  RR  C_  CC
65a1i 10 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
7 ftc1cn.g . . . . . . 7  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
8 ftc1cn.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 ftc1cn.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
10 ftc1cn.le . . . . . . 7  |-  ( ph  ->  A  <_  B )
11 ssid 3210 . . . . . . . 8  |-  ( A (,) B )  C_  ( A (,) B )
1211a1i 10 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
13 ioossre 10728 . . . . . . . 8  |-  ( A (,) B )  C_  RR
1413a1i 10 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  RR )
15 ftc1cn.i . . . . . . 7  |-  ( ph  ->  F  e.  L ^1 )
16 ftc1cn.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
17 cncff 18413 . . . . . . . 8  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
1816, 17syl 15 . . . . . . 7  |-  ( ph  ->  F : ( A (,) B ) --> CC )
197, 8, 9, 10, 12, 14, 15, 18ftc1lem2 19399 . . . . . 6  |-  ( ph  ->  G : ( A [,] B ) --> CC )
20 iccssre 10747 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
218, 9, 20syl2anc 642 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
22 eqid 2296 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2322tgioo2 18325 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
246, 19, 21, 23, 22dvbssntr 19266 . . . . 5  |-  ( ph  ->  dom  ( RR  _D  G )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
25 iccntr 18342 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
268, 9, 25syl2anc 642 . . . . 5  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2724, 26sseqtrd 3227 . . . 4  |-  ( ph  ->  dom  ( RR  _D  G )  C_  ( A (,) B ) )
288adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  A  e.  RR )
299adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  B  e.  RR )
3010adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  A  <_  B )
3111a1i 10 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  ( A (,) B ) )
3213a1i 10 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( A (,) B )  C_  RR )
3315adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  L ^1 )
34 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  ( A (,) B ) )
3513, 5sstri 3201 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  CC
36 ssid 3210 . . . . . . . . . . . 12  |-  CC  C_  CC
37 eqid 2296 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  ( A (,) B
) )  =  ( ( TopOpen ` fld )t  ( A (,) B ) )
3822cnfldtop 18309 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Top
3922cnfldtopon 18308 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4039toponunii 16686 . . . . . . . . . . . . . . . 16  |-  CC  =  U. ( TopOpen ` fld )
4140restid 13354 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
4238, 41ax-mp 8 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4342eqcomi 2300 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
4422, 37, 43cncfcn 18429 . . . . . . . . . . . 12  |-  ( ( ( A (,) B
)  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4535, 36, 44mp2an 653 . . . . . . . . . . 11  |-  ( ( A (,) B )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )
4616, 45syl6eleq 2386 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4746adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) ) )
4835a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (,) B
)  C_  CC )
49 resttopon 16908 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( A (,) B )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( A (,) B
) )  e.  (TopOn `  ( A (,) B
) ) )
5039, 48, 49sylancr 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A (,) B ) )  e.  (TopOn `  ( A (,) B ) ) )
51 toponuni 16681 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  e.  (TopOn `  ( A (,) B ) )  -> 
( A (,) B
)  =  U. (
( TopOpen ` fld )t  ( A (,) B ) ) )
5250, 51syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  =  U. (
( TopOpen ` fld )t  ( A (,) B ) ) )
5352eleq2d 2363 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( A (,) B )  <-> 
y  e.  U. (
( TopOpen ` fld )t  ( A (,) B ) ) ) )
5453biimpa 470 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )
55 eqid 2296 . . . . . . . . . 10  |-  U. (
( TopOpen ` fld )t  ( A (,) B ) )  = 
U. ( ( TopOpen ` fld )t  ( A (,) B ) )
5655cncnpi 17023 . . . . . . . . 9  |-  ( ( F  e.  ( ( ( TopOpen ` fld )t  ( A (,) B ) )  Cn  ( TopOpen ` fld ) )  /\  y  e.  U. ( ( TopOpen ` fld )t  ( A (,) B ) ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
5747, 54, 56syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  ( A (,) B
) )  CnP  ( TopOpen
` fld
) ) `  y
) )
587, 28, 29, 30, 31, 32, 33, 34, 57, 23, 37, 22ftc1 19405 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y ( RR  _D  G ) ( F `  y ) )
59 vex 2804 . . . . . . . 8  |-  y  e. 
_V
60 fvex 5555 . . . . . . . 8  |-  ( F `
 y )  e. 
_V
6159, 60breldm 4899 . . . . . . 7  |-  ( y ( RR  _D  G
) ( F `  y )  ->  y  e.  dom  ( RR  _D  G ) )
6258, 61syl 15 . . . . . 6  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  y  e.  dom  ( RR  _D  G
) )
6362ex 423 . . . . 5  |-  ( ph  ->  ( y  e.  ( A (,) B )  ->  y  e.  dom  ( RR  _D  G
) ) )
6463ssrdv 3198 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  dom  ( RR 
_D  G ) )
6527, 64eqssd 3209 . . 3  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
66 df-fn 5274 . . 3  |-  ( ( RR  _D  G )  Fn  ( A (,) B )  <->  ( Fun  ( RR  _D  G
)  /\  dom  ( RR 
_D  G )  =  ( A (,) B
) ) )
674, 65, 66sylanbrc 645 . 2  |-  ( ph  ->  ( RR  _D  G
)  Fn  ( A (,) B ) )
68 ffn 5405 . . 3  |-  ( F : ( A (,) B ) --> CC  ->  F  Fn  ( A (,) B ) )
6918, 68syl 15 . 2  |-  ( ph  ->  F  Fn  ( A (,) B ) )
704adantr 451 . . 3  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  Fun  ( RR 
_D  G ) )
71 funbrfv 5577 . . 3  |-  ( Fun  ( RR  _D  G
)  ->  ( y
( RR  _D  G
) ( F `  y )  ->  (
( RR  _D  G
) `  y )  =  ( F `  y ) ) )
7270, 58, 71sylc 56 . 2  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  y )  =  ( F `  y ) )
7367, 69, 72eqfnfvd 5641 1  |-  ( ph  ->  ( RR  _D  G
)  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165   U.cuni 3843   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752    <_ cle 8884   (,)cioo 10672   [,]cicc 10675   ↾t crest 13341   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   Topctop 16647  TopOnctopon 16648   intcnt 16770    Cn ccn 16970    CnP ccnp 16971   -cn->ccncf 18396   L ^1cibl 18988   S.citg 18989    _D cdv 19229
This theorem is referenced by:  ftc2  19407  itgsubstlem  19411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992  df-itg2 18993  df-ibl 18994  df-itg 18995  df-0p 19041  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator