MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem4 Unicode version

Theorem ftc1lem4 19381
Description: Lemma for ftc1 19384. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
ftc1.a  |-  ( ph  ->  A  e.  RR )
ftc1.b  |-  ( ph  ->  B  e.  RR )
ftc1.le  |-  ( ph  ->  A  <_  B )
ftc1.s  |-  ( ph  ->  ( A (,) B
)  C_  D )
ftc1.d  |-  ( ph  ->  D  C_  RR )
ftc1.i  |-  ( ph  ->  F  e.  L ^1 )
ftc1.c  |-  ( ph  ->  C  e.  ( A (,) B ) )
ftc1.f  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
ftc1.j  |-  J  =  ( Lt  RR )
ftc1.k  |-  K  =  ( Lt  D )
ftc1.l  |-  L  =  ( TopOpen ` fld )
ftc1.h  |-  H  =  ( z  e.  ( ( A [,] B
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
ftc1.e  |-  ( ph  ->  E  e.  RR+ )
ftc1.r  |-  ( ph  ->  R  e.  RR+ )
ftc1.fc  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
ftc1.x1  |-  ( ph  ->  X  e.  ( A [,] B ) )
ftc1.x2  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
ftc1.y1  |-  ( ph  ->  Y  e.  ( A [,] B ) )
ftc1.y2  |-  ( ph  ->  ( abs `  ( Y  -  C )
)  <  R )
Assertion
Ref Expression
ftc1lem4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  <  E
)
Distinct variable groups:    x, t,
y, z, C    t, D, x, y, z    y, G, z    t, A, x, y, z    t, B, x, y, z    t, X, x, z    t, E, y    y, H    ph, t, x, y, z    t, Y, x    t, F, x, y, z    x, L, y, z    y, R
Allowed substitution hints:    R( x, z, t)    E( x, z)    G( x, t)    H( x, z, t)    J( x, y, z, t)    K( x, y, z, t)    L( t)    X( y)    Y( y, z)

Proof of Theorem ftc1lem4
StepHypRef Expression
1 ftc1.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  RR )
2 ftc1.b . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR )
3 iccssre 10726 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3syl2anc 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A [,] B
)  C_  RR )
5 ftc1.x1 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  ( A [,] B ) )
64, 5sseldd 3183 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
7 ftc1.y1 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ( A [,] B ) )
84, 7sseldd 3183 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  RR )
9 ltle 8906 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X  <  Y  ->  X  <_  Y )
)
106, 8, 9syl2anc 644 . . . . . . . . . . 11  |-  ( ph  ->  ( X  <  Y  ->  X  <_  Y )
)
1110imp 420 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  X  <_  Y )
12 ftc1.g . . . . . . . . . . 11  |-  G  =  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( F `
 t )  _d t )
13 ftc1.le . . . . . . . . . . 11  |-  ( ph  ->  A  <_  B )
14 ftc1.s . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  D )
15 ftc1.d . . . . . . . . . . 11  |-  ( ph  ->  D  C_  RR )
16 ftc1.i . . . . . . . . . . 11  |-  ( ph  ->  F  e.  L ^1 )
17 ftc1.c . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ( A (,) B ) )
18 ftc1.f . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( ( K  CnP  L ) `
 C ) )
19 ftc1.j . . . . . . . . . . . 12  |-  J  =  ( Lt  RR )
20 ftc1.k . . . . . . . . . . . 12  |-  K  =  ( Lt  D )
21 ftc1.l . . . . . . . . . . . 12  |-  L  =  ( TopOpen ` fld )
2212, 1, 2, 13, 14, 15, 16, 17, 18, 19, 20, 21ftc1lem3 19380 . . . . . . . . . . 11  |-  ( ph  ->  F : D --> CC )
2312, 1, 2, 13, 14, 15, 16, 22, 5, 7ftc1lem1 19377 . . . . . . . . . 10  |-  ( (
ph  /\  X  <_  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  S. ( X (,) Y ) ( F `
 t )  _d t )
2411, 23syldan 458 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  S. ( X (,) Y ) ( F `
 t )  _d t )
251rexrd 8877 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  RR* )
26 elicc2 10710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
271, 2, 26syl2anc 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
285, 27mpbid 203 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) )
2928simp2d 970 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <_  X )
30 iooss1 10686 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR*  /\  A  <_  X )  ->  ( X (,) Y )  C_  ( A (,) Y ) )
3125, 29, 30syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X (,) Y
)  C_  ( A (,) Y ) )
322rexrd 8877 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  e.  RR* )
33 elicc2 10710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Y  e.  ( A [,] B )  <-> 
( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) ) )
341, 2, 33syl2anc 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( Y  e.  ( A [,] B )  <-> 
( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) ) )
357, 34mpbid 203 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( Y  e.  RR  /\  A  <_  Y  /\  Y  <_  B ) )
3635simp3d 971 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Y  <_  B )
37 iooss2 10687 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  RR*  /\  Y  <_  B )  ->  ( A (,) Y )  C_  ( A (,) B ) )
3832, 36, 37syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A (,) Y
)  C_  ( A (,) B ) )
3931, 38sstrd 3191 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X (,) Y
)  C_  ( A (,) B ) )
4039, 14sstrd 3191 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X (,) Y
)  C_  D )
4140sselda 3182 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  e.  D )
42 ffvelrn 5625 . . . . . . . . . . . . . . 15  |-  ( ( F : D --> CC  /\  t  e.  D )  ->  ( F `  t
)  e.  CC )
4322, 42sylan 459 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  D )  ->  ( F `  t )  e.  CC )
4441, 43syldan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( F `  t )  e.  CC )
4514, 17sseldd 3183 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  D )
46 ffvelrn 5625 . . . . . . . . . . . . . . 15  |-  ( ( F : D --> CC  /\  C  e.  D )  ->  ( F `  C
)  e.  CC )
4722, 45, 46syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  C
)  e.  CC )
4847adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( F `  C )  e.  CC )
4944, 48npcand 9157 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( (
( F `  t
)  -  ( F `
 C ) )  +  ( F `  C ) )  =  ( F `  t
) )
5049itgeq2dv 19131 . . . . . . . . . . 11  |-  ( ph  ->  S. ( X (,) Y ) ( ( ( F `  t
)  -  ( F `
 C ) )  +  ( F `  C ) )  _d t  =  S. ( X (,) Y ) ( F `  t
)  _d t )
5144, 48subcld 9153 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( F `  t )  -  ( F `  C ) )  e.  CC )
52 ioombl 18917 . . . . . . . . . . . . . . 15  |-  ( X (,) Y )  e. 
dom  vol
5352a1i 12 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X (,) Y
)  e.  dom  vol )
54 fvex 5500 . . . . . . . . . . . . . . 15  |-  ( F `
 t )  e. 
_V
5554a1i 12 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  D )  ->  ( F `  t )  e.  _V )
5622feqmptd 5537 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  =  ( t  e.  D  |->  ( F `
 t ) ) )
5756, 16eqeltrrd 2360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  D  |->  ( F `  t
) )  e.  L ^1 )
5840, 53, 55, 57iblss 19154 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  t
) )  e.  L ^1 )
59 fconstmpt 4732 . . . . . . . . . . . . . 14  |-  ( ( X (,) Y )  X.  { ( F `
 C ) } )  =  ( t  e.  ( X (,) Y )  |->  ( F `
 C ) )
60 mblvol 18884 . . . . . . . . . . . . . . . . 17  |-  ( ( X (,) Y )  e.  dom  vol  ->  ( vol `  ( X (,) Y ) )  =  ( vol * `  ( X (,) Y
) ) )
6152, 60ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( X (,) Y
) )  =  ( vol * `  ( X (,) Y ) )
62 ioossicc 10730 . . . . . . . . . . . . . . . . . 18  |-  ( X (,) Y )  C_  ( X [,] Y )
6362a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X (,) Y
)  C_  ( X [,] Y ) )
64 iccmbl 18918 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  e.  dom  vol )
656, 8, 64syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X [,] Y
)  e.  dom  vol )
66 mblss 18885 . . . . . . . . . . . . . . . . . 18  |-  ( ( X [,] Y )  e.  dom  vol  ->  ( X [,] Y ) 
C_  RR )
6765, 66syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
68 mblvol 18884 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X [,] Y )  e.  dom  vol  ->  ( vol `  ( X [,] Y ) )  =  ( vol * `  ( X [,] Y
) ) )
6965, 68syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( vol `  ( X [,] Y ) )  =  ( vol * `  ( X [,] Y
) ) )
70 iccvolcl 18919 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( vol `  ( X [,] Y ) )  e.  RR )
716, 8, 70syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( vol `  ( X [,] Y ) )  e.  RR )
7269, 71eqeltrrd 2360 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( vol * `  ( X [,] Y ) )  e.  RR )
73 ovolsscl 18840 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X (,) Y
)  C_  ( X [,] Y )  /\  ( X [,] Y )  C_  RR  /\  ( vol * `  ( X [,] Y
) )  e.  RR )  ->  ( vol * `  ( X (,) Y
) )  e.  RR )
7463, 67, 72, 73syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( vol * `  ( X (,) Y ) )  e.  RR )
7561, 74syl5eqel 2369 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( vol `  ( X (,) Y ) )  e.  RR )
76 iblconst 19167 . . . . . . . . . . . . . . 15  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  ( F `  C )  e.  CC )  ->  (
( X (,) Y
)  X.  { ( F `  C ) } )  e.  L ^1 )
7753, 75, 47, 76syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X (,) Y )  X.  {
( F `  C
) } )  e.  L ^1 )
7859, 77syl5eqelr 2370 . . . . . . . . . . . . 13  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( F `  C
) )  e.  L ^1 )
7944, 58, 48, 78iblsub 19171 . . . . . . . . . . . 12  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( ( F `  t )  -  ( F `  C )
) )  e.  L ^1 )
8051, 79, 48, 78itgadd 19174 . . . . . . . . . . 11  |-  ( ph  ->  S. ( X (,) Y ) ( ( ( F `  t
)  -  ( F `
 C ) )  +  ( F `  C ) )  _d t  =  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  +  S. ( X (,) Y ) ( F `
 C )  _d t ) )
8150, 80eqtr3d 2319 . . . . . . . . . 10  |-  ( ph  ->  S. ( X (,) Y ) ( F `
 t )  _d t  =  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  +  S. ( X (,) Y ) ( F `
 C )  _d t ) )
8281adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  t )  _d t  =  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  +  S. ( X (,) Y ) ( F `  C
)  _d t ) )
83 itgconst 19168 . . . . . . . . . . . . 13  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  ( F `  C )  e.  CC )  ->  S. ( X (,) Y ) ( F `  C
)  _d t  =  ( ( F `  C )  x.  ( vol `  ( X (,) Y ) ) ) )
8453, 75, 47, 83syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  S. ( X (,) Y ) ( F `
 C )  _d t  =  ( ( F `  C )  x.  ( vol `  ( X (,) Y ) ) ) )
8584adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  C )  _d t  =  ( ( F `  C
)  x.  ( vol `  ( X (,) Y
) ) ) )
866adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  <  Y )  ->  X  e.  RR )
878adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  <  Y )  ->  Y  e.  RR )
88 ovolioo 18920 . . . . . . . . . . . . . 14  |-  ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <_  Y )  ->  ( vol * `  ( X (,) Y ) )  =  ( Y  -  X ) )
8986, 87, 11, 88syl3anc 1184 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  <  Y )  ->  ( vol * `
 ( X (,) Y ) )  =  ( Y  -  X
) )
9061, 89syl5eq 2329 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  <  Y )  ->  ( vol `  ( X (,) Y
) )  =  ( Y  -  X ) )
9190oveq2d 5836 . . . . . . . . . . 11  |-  ( (
ph  /\  X  <  Y )  ->  ( ( F `  C )  x.  ( vol `  ( X (,) Y ) ) )  =  ( ( F `  C )  x.  ( Y  -  X ) ) )
9285, 91eqtrd 2317 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( F `  C )  _d t  =  ( ( F `  C
)  x.  ( Y  -  X ) ) )
9392oveq2d 5836 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  +  S. ( X (,) Y ) ( F `
 C )  _d t )  =  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  +  ( ( F `  C )  x.  ( Y  -  X ) ) ) )
9424, 82, 933eqtrd 2321 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( ( G `  Y )  -  ( G `  X ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  +  ( ( F `  C
)  x.  ( Y  -  X ) ) ) )
9594oveq1d 5835 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( G `  Y
)  -  ( G `
 X ) )  /  ( Y  -  X ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  +  ( ( F `  C )  x.  ( Y  -  X )
) )  /  ( Y  -  X )
) )
96 ovex 5845 . . . . . . . . . . 11  |-  ( ( F `  t )  -  ( F `  C ) )  e. 
_V
9796a1i 12 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( F `  t )  -  ( F `  C ) )  e. 
_V )
9897, 79itgcl 19133 . . . . . . . . 9  |-  ( ph  ->  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  e.  CC )
9998adantr 453 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  e.  CC )
10047adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( F `  C )  e.  CC )
1018, 6resubcld 9207 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
102101adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  e.  RR )
103102recnd 8857 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  e.  CC )
104100, 103mulcld 8851 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( ( F `  C )  x.  ( Y  -  X
) )  e.  CC )
1056, 8posdifd 9355 . . . . . . . . . 10  |-  ( ph  ->  ( X  <  Y  <->  0  <  ( Y  -  X ) ) )
106105biimpa 472 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( Y  -  X ) )
107106gt0ne0d 9333 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( Y  -  X )  =/=  0
)
10899, 104, 103, 107divdird 9570 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  +  ( ( F `  C )  x.  ( Y  -  X )
) )  /  ( Y  -  X )
)  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  /  ( Y  -  X ) )  +  ( ( ( F `  C )  x.  ( Y  -  X ) )  / 
( Y  -  X
) ) ) )
109100, 103, 107divcan4d 9538 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( F `  C
)  x.  ( Y  -  X ) )  /  ( Y  -  X ) )  =  ( F `  C
) )
110109oveq2d 5836 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  / 
( Y  -  X
) )  +  ( ( ( F `  C )  x.  ( Y  -  X )
)  /  ( Y  -  X ) ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t  /  ( Y  -  X ) )  +  ( F `  C ) ) )
11195, 108, 1103eqtrd 2321 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( G `  Y
)  -  ( G `
 X ) )  /  ( Y  -  X ) )  =  ( ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  / 
( Y  -  X
) )  +  ( F `  C ) ) )
112111oveq1d 5835 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( ( G `  Y )  -  ( G `  X )
)  /  ( Y  -  X ) )  -  ( F `  C ) )  =  ( ( ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  / 
( Y  -  X
) )  +  ( F `  C ) )  -  ( F `
 C ) ) )
11399, 103, 107divcld 9532 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t  / 
( Y  -  X
) )  e.  CC )
114113, 100pncand 9154 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
)  +  ( F `
 C ) )  -  ( F `  C ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
) )
115112, 114eqtrd 2317 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( ( G `  Y )  -  ( G `  X )
)  /  ( Y  -  X ) )  -  ( F `  C ) )  =  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
) )
116115fveq2d 5490 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  =  ( abs `  ( S. ( X (,) Y
) ( ( F `
 t )  -  ( F `  C ) )  _d t  / 
( Y  -  X
) ) ) )
11799, 103, 107absdivd 11932 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t  /  ( Y  -  X )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( abs `  ( Y  -  X )
) ) )
118 0re 8834 . . . . . . 7  |-  0  e.  RR
119 ltle 8906 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( Y  -  X
)  e.  RR )  ->  ( 0  < 
( Y  -  X
)  ->  0  <_  ( Y  -  X ) ) )
120118, 102, 119sylancr 646 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  ( 0  <  ( Y  -  X )  ->  0  <_  ( Y  -  X
) ) )
121106, 120mpd 16 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  0  <_  ( Y  -  X ) )
122102, 121absidd 11900 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( Y  -  X
) )  =  ( Y  -  X ) )
123122oveq2d 5836 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( ( abs `  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t )  / 
( abs `  ( Y  -  X )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( Y  -  X ) ) )
124116, 117, 1233eqtrd 2321 . 2  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  =  ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( Y  -  X ) ) )
12598abscld 11913 . . . . 5  |-  ( ph  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  e.  RR )
126125adantr 453 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  e.  RR )
12751abscld 11913 . . . . . 6  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( ( F `  t )  -  ( F `  C )
) )  e.  RR )
12897, 79iblabs 19178 . . . . . 6  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  e.  L ^1 )
129127, 128itgrecl 19147 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C )
) )  _d t  e.  RR )
130129adantr 453 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  e.  RR )
131 ftc1.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
132131rpred 10386 . . . . . 6  |-  ( ph  ->  E  e.  RR )
133101, 132remulcld 8859 . . . . 5  |-  ( ph  ->  ( ( Y  -  X )  x.  E
)  e.  RR )
134133adantr 453 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( ( Y  -  X )  x.  E )  e.  RR )
13551, 79itgabs 19184 . . . . 5  |-  ( ph  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  <_  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t )
136135adantr 453 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  <_  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t )
137106, 90breqtrrd 4051 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( vol `  ( X (,) Y ) ) )
138132adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  E  e.  RR )
139 fconstmpt 4732 . . . . . . . . . 10  |-  ( ( X (,) Y )  X.  { E }
)  =  ( t  e.  ( X (,) Y )  |->  E )
140132recnd 8857 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  CC )
141 iblconst 19167 . . . . . . . . . . 11  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  E  e.  CC )  ->  (
( X (,) Y
)  X.  { E } )  e.  L ^1 )
14253, 75, 140, 141syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( ( X (,) Y )  X.  { E } )  e.  L ^1 )
143139, 142syl5eqelr 2370 . . . . . . . . 9  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  E )  e.  L ^1 )
144138, 143, 127, 128iblsub 19171 . . . . . . . 8  |-  ( ph  ->  ( t  e.  ( X (,) Y ) 
|->  ( E  -  ( abs `  ( ( F `
 t )  -  ( F `  C ) ) ) ) )  e.  L ^1 )
145144adantr 453 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( t  e.  ( X (,) Y
)  |->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C ) ) ) ) )  e.  L ^1 )
146 ftc1.fc . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  D )  ->  (
( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
147146ralrimiva 2628 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E ) )
148147adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  A. y  e.  D  ( ( abs `  ( y  -  C ) )  < 
R  ->  ( abs `  ( ( F `  y )  -  ( F `  C )
) )  <  E
) )
14915, 45sseldd 3183 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  RR )
150 ftc1.r . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  RR+ )
151150rpred 10386 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  RR )
152149, 151resubcld 9207 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  -  R
)  e.  RR )
153152adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  -  R )  e.  RR )
1546adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  X  e.  RR )
15540, 15sstrd 3191 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X (,) Y
)  C_  RR )
156155sselda 3182 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  e.  RR )
157 ftc1.x2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs `  ( X  -  C )
)  <  R )
1586, 149, 151absdifltd 11911 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( X  -  C )
)  <  R  <->  ( ( C  -  R )  <  X  /\  X  < 
( C  +  R
) ) ) )
159157, 158mpbid 203 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  -  R )  <  X  /\  X  <  ( C  +  R ) ) )
160159simpld 447 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  -  R
)  <  X )
161160adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  -  R )  <  X
)
162 eliooord 10705 . . . . . . . . . . . . . 14  |-  ( t  e.  ( X (,) Y )  ->  ( X  <  t  /\  t  <  Y ) )
163162adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( X  <  t  /\  t  < 
Y ) )
164163simpld 447 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  X  <  t )
165153, 154, 156, 161, 164lttrd 8973 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  -  R )  <  t
)
1668adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  Y  e.  RR )
167149, 151readdcld 8858 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  +  R
)  e.  RR )
168167adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( C  +  R )  e.  RR )
169163simprd 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  <  Y )
170 ftc1.y2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs `  ( Y  -  C )
)  <  R )
1718, 149, 151absdifltd 11911 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( Y  -  C )
)  <  R  <->  ( ( C  -  R )  <  Y  /\  Y  < 
( C  +  R
) ) ) )
172170, 171mpbid 203 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  -  R )  <  Y  /\  Y  <  ( C  +  R ) ) )
173172simprd 451 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  <  ( C  +  R ) )
174173adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  Y  <  ( C  +  R ) )
175156, 166, 168, 169, 174lttrd 8973 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  t  <  ( C  +  R ) )
176149adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  C  e.  RR )
177151adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  R  e.  RR )
178156, 176, 177absdifltd 11911 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( abs `  ( t  -  C ) )  < 
R  <->  ( ( C  -  R )  < 
t  /\  t  <  ( C  +  R ) ) ) )
179165, 175, 178mpbir2and 890 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( t  -  C
) )  <  R
)
180 oveq1 5827 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  (
y  -  C )  =  ( t  -  C ) )
181180fveq2d 5490 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  ( abs `  ( y  -  C ) )  =  ( abs `  (
t  -  C ) ) )
182181breq1d 4035 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( abs `  (
y  -  C ) )  <  R  <->  ( abs `  ( t  -  C
) )  <  R
) )
183 fveq2 5486 . . . . . . . . . . . . . . 15  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
184183oveq1d 5835 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  (
( F `  y
)  -  ( F `
 C ) )  =  ( ( F `
 t )  -  ( F `  C ) ) )
185184fveq2d 5490 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  ( abs `  ( ( F `
 y )  -  ( F `  C ) ) )  =  ( abs `  ( ( F `  t )  -  ( F `  C ) ) ) )
186185breq1d 4035 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E  <->  ( abs `  ( ( F `  t )  -  ( F `  C )
) )  <  E
) )
187182, 186imbi12d 313 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( ( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E )  <-> 
( ( abs `  (
t  -  C ) )  <  R  -> 
( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  <  E ) ) )
188187rspcv 2882 . . . . . . . . . 10  |-  ( t  e.  D  ->  ( A. y  e.  D  ( ( abs `  (
y  -  C ) )  <  R  -> 
( abs `  (
( F `  y
)  -  ( F `
 C ) ) )  <  E )  ->  ( ( abs `  ( t  -  C
) )  <  R  ->  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  <  E ) ) )
18941, 148, 179, 188syl3c 59 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( abs `  ( ( F `  t )  -  ( F `  C )
) )  <  E
)
190 difrp 10383 . . . . . . . . . 10  |-  ( ( ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  e.  RR  /\  E  e.  RR )  ->  ( ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  <  E  <->  ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  e.  RR+ ) )
191127, 138, 190syl2anc 644 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( ( abs `  ( ( F `
 t )  -  ( F `  C ) ) )  <  E  <->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  e.  RR+ ) )
192189, 191mpbid 203 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( X (,) Y ) )  ->  ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  e.  RR+ )
193192adantlr 697 . . . . . . 7  |-  ( ( ( ph  /\  X  <  Y )  /\  t  e.  ( X (,) Y
) )  ->  ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  e.  RR+ )
194137, 145, 193itggt0 19191 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  0  <  S. ( X (,) Y
) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C ) ) ) )  _d t )
195138, 143, 127, 128itgsub 19175 . . . . . . . 8  |-  ( ph  ->  S. ( X (,) Y ) ( E  -  ( abs `  (
( F `  t
)  -  ( F `
 C ) ) ) )  _d t  =  ( S. ( X (,) Y ) E  _d t  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )
196195adantr 453 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  _d t  =  ( S. ( X (,) Y
) E  _d t  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t ) )
197 itgconst 19168 . . . . . . . . . . 11  |-  ( ( ( X (,) Y
)  e.  dom  vol  /\  ( vol `  ( X (,) Y ) )  e.  RR  /\  E  e.  CC )  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y ) ) ) )
19853, 75, 140, 197syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y ) ) ) )
199198adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) E  _d t  =  ( E  x.  ( vol `  ( X (,) Y
) ) ) )
20090oveq2d 5836 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( E  x.  ( vol `  ( X (,) Y ) ) )  =  ( E  x.  ( Y  -  X ) ) )
201101recnd 8857 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  -  X
)  e.  CC )
202140, 201mulcomd 8852 . . . . . . . . . 10  |-  ( ph  ->  ( E  x.  ( Y  -  X )
)  =  ( ( Y  -  X )  x.  E ) )
203202adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  X  <  Y )  ->  ( E  x.  ( Y  -  X
) )  =  ( ( Y  -  X
)  x.  E ) )
204199, 200, 2033eqtrd 2321 . . . . . . . 8  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) E  _d t  =  ( ( Y  -  X
)  x.  E ) )
205204oveq1d 5835 . . . . . . 7  |-  ( (
ph  /\  X  <  Y )  ->  ( S. ( X (,) Y ) E  _d t  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t )  =  ( ( ( Y  -  X )  x.  E )  -  S. ( X (,) Y
) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )
206196, 205eqtrd 2317 . . . . . 6  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( E  -  ( abs `  ( ( F `  t )  -  ( F `  C )
) ) )  _d t  =  ( ( ( Y  -  X
)  x.  E )  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t ) )
207194, 206breqtrd 4049 . . . . 5  |-  ( (
ph  /\  X  <  Y )  ->  0  <  ( ( ( Y  -  X )  x.  E
)  -  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )
208129, 133posdifd 9355 . . . . . 6  |-  ( ph  ->  ( S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  <  (
( Y  -  X
)  x.  E )  <->  0  <  ( ( ( Y  -  X
)  x.  E )  -  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t ) ) )
209208biimpar 473 . . . . 5  |-  ( (
ph  /\  0  <  ( ( ( Y  -  X )  x.  E
)  -  S. ( X (,) Y ) ( abs `  (
( F `  t
)  -  ( F `
 C ) ) )  _d t ) )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  <  (
( Y  -  X
)  x.  E ) )
210207, 209syldan 458 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  S. ( X (,) Y ) ( abs `  ( ( F `  t )  -  ( F `  C ) ) )  _d t  <  (
( Y  -  X
)  x.  E ) )
211126, 130, 134, 136, 210lelttrd 8970 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  <  (
( Y  -  X
)  x.  E ) )
21299abscld 11913 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  e.  RR )
213132adantr 453 . . . 4  |-  ( (
ph  /\  X  <  Y )  ->  E  e.  RR )
214 ltdivmul 9624 . . . 4  |-  ( ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  e.  RR  /\  E  e.  RR  /\  ( ( Y  -  X )  e.  RR  /\  0  <  ( Y  -  X
) ) )  -> 
( ( ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  /  ( Y  -  X )
)  <  E  <->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C ) )  _d t )  <  (
( Y  -  X
)  x.  E ) ) )
215212, 213, 102, 106, 214syl112anc 1188 . . 3  |-  ( (
ph  /\  X  <  Y )  ->  ( (
( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  /  ( Y  -  X ) )  < 
E  <->  ( abs `  S. ( X (,) Y ) ( ( F `  t )  -  ( F `  C )
)  _d t )  <  ( ( Y  -  X )  x.  E ) ) )
216211, 215mpbird 225 . 2  |-  ( (
ph  /\  X  <  Y )  ->  ( ( abs `  S. ( X (,) Y ) ( ( F `  t
)  -  ( F `
 C ) )  _d t )  / 
( Y  -  X
) )  <  E
)
217124, 216eqbrtrd 4045 1  |-  ( (
ph  /\  X  <  Y )  ->  ( abs `  ( ( ( ( G `  Y )  -  ( G `  X ) )  / 
( Y  -  X
) )  -  ( F `  C )
) )  <  E
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2545   _Vcvv 2790    \ cdif 3151    C_ wss 3154   {csn 3642   class class class wbr 4025    e. cmpt 4079    X. cxp 4687   dom cdm 4689   -->wf 5218   ` cfv 5222  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733    + caddc 8736    x. cmul 8738   RR*cxr 8862    < clt 8863    <_ cle 8864    - cmin 9033    / cdiv 9419   RR+crp 10350   (,)cioo 10651   [,]cicc 10654   abscabs 11714   ↾t crest 13320   TopOpenctopn 13321  ℂfldccnfld 16372    CnP ccnp 16950   vol
*covol 18817   volcvol 18818   L ^1cibl 18967   S.citg 18968
This theorem is referenced by:  ftc1lem5  19382
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cc 8057  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-disj 3996  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-ofr 6041  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10655  df-ioc 10656  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-rlim 11958  df-sum 12154  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-mulg 14487  df-cntz 14788  df-cmn 15086  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cn 16952  df-cnp 16953  df-cmp 17109  df-tx 17252  df-hmeo 17441  df-xms 17880  df-ms 17881  df-tms 17882  df-cncf 18377  df-ovol 18819  df-vol 18820  df-mbf 18970  df-itg1 18971  df-itg2 18972  df-ibl 18973  df-itg 18974  df-0p 19020
  Copyright terms: Public domain W3C validator