MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2 Unicode version

Theorem ftc2 19318
Description: The Fundamental Theorem of Calculus, part two. If  F is a function continuous on  [ A ,  B ] and continuously differentiable on  ( A ,  B ), then the integral of the derivative of  F is equal to  F ( B )  -  F ( A ). (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
ftc2.a  |-  ( ph  ->  A  e.  RR )
ftc2.b  |-  ( ph  ->  B  e.  RR )
ftc2.le  |-  ( ph  ->  A  <_  B )
ftc2.c  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
ftc2.i  |-  ( ph  ->  ( RR  _D  F
)  e.  L ^1 )
ftc2.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
Assertion
Ref Expression
ftc2  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Distinct variable groups:    t, A    t, B    t, F    ph, t

Proof of Theorem ftc2
StepHypRef Expression
1 ftc2.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21rexrd 8814 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
3 ftc2.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43rexrd 8814 . . . . . 6  |-  ( ph  ->  B  e.  RR* )
5 ftc2.le . . . . . 6  |-  ( ph  ->  A  <_  B )
6 ubicc2 10684 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
72, 4, 5, 6syl3anc 1187 . . . . 5  |-  ( ph  ->  B  e.  ( A [,] B ) )
8 fvex 5437 . . . . . 6  |-  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) `  A )  e.  _V
98fvconst2 5628 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
) } ) `  B )  =  ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) )
107, 9syl 17 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) )
11 eqid 2256 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1211subcn 18297 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1312a1i 12 . . . . . . . 8  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
14 eqid 2256 . . . . . . . . 9  |-  ( x  e.  ( A [,] B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t )  =  ( x  e.  ( A [,] B
)  |->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t )
15 ssid 3139 . . . . . . . . . 10  |-  ( A (,) B )  C_  ( A (,) B )
1615a1i 12 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
17 ioossre 10643 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
1817a1i 12 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  RR )
19 ftc2.i . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  e.  L ^1 )
20 ftc2.c . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
21 cncff 18324 . . . . . . . . . 10  |-  ( ( RR  _D  F )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( RR  _D  F ) : ( A (,) B ) --> CC )
2220, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
2314, 1, 3, 5, 16, 18, 19, 22ftc1a 19311 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t )  e.  ( ( A [,] B
) -cn-> CC ) )
24 ftc2.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
25 cncff 18324 . . . . . . . . . . 11  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : ( A [,] B ) --> CC )
2726feqmptd 5474 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  ( A [,] B )  |->  ( F `
 x ) ) )
2827, 24eqeltrrd 2331 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( F `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
2911, 13, 23, 28cncfmpt2f 18345 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  e.  ( ( A [,] B
) -cn-> CC ) )
30 ax-resscn 8727 . . . . . . . . . . 11  |-  RR  C_  CC
3130a1i 12 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
32 iccssre 10662 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
331, 3, 32syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  C_  RR )
34 fvex 5437 . . . . . . . . . . . . 13  |-  ( ( RR  _D  F ) `
 t )  e. 
_V
3534a1i 12 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) x
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
363adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
3736rexrd 8814 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
38 elicc2 10646 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
391, 3, 38syl2anc 645 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
4039biimpa 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
4140simp3d 974 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
42 iooss2 10623 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR*  /\  x  <_  B )  ->  ( A (,) x )  C_  ( A (,) B ) )
4337, 41, 42syl2anc 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  ( A (,) B ) )
44 ioombl 18849 . . . . . . . . . . . . . 14  |-  ( A (,) x )  e. 
dom  vol
4544a1i 12 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  e.  dom  vol )
4634a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
4722feqmptd 5474 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) ) )
4847, 19eqeltrrd 2331 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  ( ( RR  _D  F ) `  t
) )  e.  L ^1 )
4948adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L ^1 )
5043, 45, 46, 49iblss 19086 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) x
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L ^1 )
5135, 50itgcl 19065 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
52 ffvelrn 5562 . . . . . . . . . . . 12  |-  ( ( F : ( A [,] B ) --> CC 
/\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
5326, 52sylan 459 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
5451, 53subcld 9090 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) )  e.  CC )
5511tgioo2 18236 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 18253 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 3, 56syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5831, 33, 54, 55, 11, 57dvmptntr 19247 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) ) )
59 reex 8761 . . . . . . . . . . . 12  |-  RR  e.  _V
6059prid1 3675 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
6160a1i 12 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
62 ioossicc 10666 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  ( A [,] B )
6362sseli 3118 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
6463, 51sylan2 462 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
65 ffvelrn 5562 . . . . . . . . . . 11  |-  ( ( ( RR  _D  F
) : ( A (,) B ) --> CC 
/\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
6622, 65sylan 459 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
6714, 1, 3, 5, 20, 19ftc1cn 19317 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  F ) )
6831, 33, 51, 55, 11, 57dvmptntr 19247 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t ) ) )
6922feqmptd 5474 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 x ) ) )
7067, 68, 693eqtr3d 2296 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7163, 53sylan2 462 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  CC )
7231, 33, 53, 55, 11, 57dvmptntr 19247 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) ) )
7327oveq2d 5773 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( x  e.  ( A [,] B
)  |->  ( F `  x ) ) ) )
7473, 69eqtr3d 2290 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7572, 74eqtr3d 2290 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7661, 64, 66, 70, 71, 66, 75dvmptsub 19243 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  x
)  -  ( ( RR  _D  F ) `
 x ) ) ) )
7766subidd 9078 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  -  ( ( RR 
_D  F ) `  x ) )  =  0 )
7877mpteq2dva 4046 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  x )  -  (
( RR  _D  F
) `  x )
) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
7958, 76, 783eqtrd 2292 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
80 fconstmpt 4685 . . . . . . . 8  |-  ( ( A (,) B )  X.  { 0 } )  =  ( x  e.  ( A (,) B )  |->  0 )
8179, 80syl6eqr 2306 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( ( A (,) B
)  X.  { 0 } ) )
821, 3, 29, 81dveq0 19274 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  =  ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) )
8382fveq1d 5425 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) `  B ) )
84 oveq2 5765 . . . . . . . . 9  |-  ( x  =  B  ->  ( A (,) x )  =  ( A (,) B
) )
85 itgeq1 19054 . . . . . . . . 9  |-  ( ( A (,) x )  =  ( A (,) B )  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
8684, 85syl 17 . . . . . . . 8  |-  ( x  =  B  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
87 fveq2 5423 . . . . . . . 8  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
8886, 87oveq12d 5775 . . . . . . 7  |-  ( x  =  B  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
) )
89 eqid 2256 . . . . . . 7  |-  ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) )  =  ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) )
90 ovex 5782 . . . . . . 7  |-  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) )  e. 
_V
9188, 89, 90fvmpt 5501 . . . . . 6  |-  ( B  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
927, 91syl 17 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
9383, 92eqtr3d 2290 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  B ) ) )
94 lbicc2 10683 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
952, 4, 5, 94syl3anc 1187 . . . . 5  |-  ( ph  ->  A  e.  ( A [,] B ) )
96 oveq2 5765 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( A (,) x )  =  ( A (,) A
) )
97 iooid 10615 . . . . . . . . . . 11  |-  ( A (,) A )  =  (/)
9896, 97syl6eq 2304 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A (,) x )  =  (/) )
99 itgeq1 19054 . . . . . . . . . 10  |-  ( ( A (,) x )  =  (/)  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
10098, 99syl 17 . . . . . . . . 9  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
101 itg0 19061 . . . . . . . . 9  |-  S. (/) ( ( RR  _D  F ) `  t
)  _d t  =  0
102100, 101syl6eq 2304 . . . . . . . 8  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  0 )
103 fveq2 5423 . . . . . . . 8  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
104102, 103oveq12d 5775 . . . . . . 7  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( 0  -  ( F `  A )
) )
105 df-neg 8973 . . . . . . 7  |-  -u ( F `  A )  =  ( 0  -  ( F `  A
) )
106104, 105syl6eqr 2306 . . . . . 6  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  = 
-u ( F `  A ) )
107 negex 8983 . . . . . 6  |-  -u ( F `  A )  e.  _V
108106, 89, 107fvmpt 5501 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
)  =  -u ( F `  A )
)
10995, 108syl 17 . . . 4  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
)  =  -u ( F `  A )
)
11010, 93, 1093eqtr3d 2296 . . 3  |-  ( ph  ->  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
)  =  -u ( F `  A )
)
111110oveq2d 5773 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  ( ( F `  B )  +  -u ( F `  A ) ) )
112 ffvelrn 5562 . . . 4  |-  ( ( F : ( A [,] B ) --> CC 
/\  B  e.  ( A [,] B ) )  ->  ( F `  B )  e.  CC )
11326, 7, 112syl2anc 645 . . 3  |-  ( ph  ->  ( F `  B
)  e.  CC )
11434a1i 12 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  t )  e.  _V )
115114, 48itgcl 19065 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  e.  CC )
116113, 115pncan3d 9093 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t )
117 ffvelrn 5562 . . . 4  |-  ( ( F : ( A [,] B ) --> CC 
/\  A  e.  ( A [,] B ) )  ->  ( F `  A )  e.  CC )
11826, 95, 117syl2anc 645 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
119113, 118negsubd 9096 . 2  |-  ( ph  ->  ( ( F `  B )  +  -u ( F `  A ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
120111, 116, 1193eqtr3d 2296 1  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   _Vcvv 2740    C_ wss 3094   (/)c0 3397   {csn 3581   {cpr 3582   class class class wbr 3963    e. cmpt 4017    X. cxp 4624   dom cdm 4626   ran crn 4627   -->wf 4634   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670    + caddc 8673   RR*cxr 8799    <_ cle 8801    - cmin 8970   -ucneg 8971   (,)cioo 10587   [,]cicc 10590   TopOpenctopn 13253   topGenctg 13269  ℂfldccnfld 16304   intcnt 16681    Cn ccn 16881    tX ctx 17182   -cn->ccncf 18307   volcvol 18750   L ^1cibl 18899   S.citg 18900    _D cdv 19140
This theorem is referenced by:  ftc2ditglem  19319  itgparts  19321  itgsubstlem  19322  lhe4.4ex1a  26878
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cc 7994  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-disj 3935  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-ofr 5978  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-acn 7508  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-rlim 11893  df-sum 12089  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-cmp 17041  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-ovol 18751  df-vol 18752  df-mbf 18902  df-itg1 18903  df-itg2 18904  df-ibl 18905  df-itg 18906  df-0p 18952  df-limc 19143  df-dv 19144
  Copyright terms: Public domain W3C validator