MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc2 Unicode version

Theorem ftc2 19386
Description: The Fundamental Theorem of Calculus, part two. If  F is a function continuous on  [ A ,  B ] and continuously differentiable on  ( A ,  B ), then the integral of the derivative of  F is equal to  F ( B )  -  F ( A ). (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
ftc2.a  |-  ( ph  ->  A  e.  RR )
ftc2.b  |-  ( ph  ->  B  e.  RR )
ftc2.le  |-  ( ph  ->  A  <_  B )
ftc2.c  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
ftc2.i  |-  ( ph  ->  ( RR  _D  F
)  e.  L ^1 )
ftc2.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
Assertion
Ref Expression
ftc2  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Distinct variable groups:    t, A    t, B    t, F    ph, t

Proof of Theorem ftc2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ftc2.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21rexrd 8876 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
3 ftc2.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43rexrd 8876 . . . . . 6  |-  ( ph  ->  B  e.  RR* )
5 ftc2.le . . . . . 6  |-  ( ph  ->  A  <_  B )
6 ubicc2 10748 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
72, 4, 5, 6syl3anc 1182 . . . . 5  |-  ( ph  ->  B  e.  ( A [,] B ) )
8 fvex 5499 . . . . . 6  |-  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) `  A )  e.  _V
98fvconst2 5690 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
) } ) `  B )  =  ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) )
107, 9syl 15 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) )
11 eqid 2283 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1211subcn 18365 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1312a1i 10 . . . . . . . 8  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
14 eqid 2283 . . . . . . . . 9  |-  ( x  e.  ( A [,] B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t )  =  ( x  e.  ( A [,] B
)  |->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t )
15 ssid 3197 . . . . . . . . . 10  |-  ( A (,) B )  C_  ( A (,) B )
1615a1i 10 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
17 ioossre 10707 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
1817a1i 10 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  RR )
19 ftc2.i . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  e.  L ^1 )
20 ftc2.c . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
21 cncff 18392 . . . . . . . . . 10  |-  ( ( RR  _D  F )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( RR  _D  F ) : ( A (,) B ) --> CC )
2220, 21syl 15 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
2314, 1, 3, 5, 16, 18, 19, 22ftc1a 19379 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t )  e.  ( ( A [,] B
) -cn-> CC ) )
24 ftc2.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
25 cncff 18392 . . . . . . . . . . 11  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
2624, 25syl 15 . . . . . . . . . 10  |-  ( ph  ->  F : ( A [,] B ) --> CC )
2726feqmptd 5536 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  ( A [,] B )  |->  ( F `
 x ) ) )
2827, 24eqeltrrd 2358 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( F `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
2911, 13, 23, 28cncfmpt2f 18413 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  e.  ( ( A [,] B
) -cn-> CC ) )
30 ax-resscn 8789 . . . . . . . . . . 11  |-  RR  C_  CC
3130a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
32 iccssre 10726 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
331, 3, 32syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  C_  RR )
34 fvex 5499 . . . . . . . . . . . . 13  |-  ( ( RR  _D  F ) `
 t )  e. 
_V
3534a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) x
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
363adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
3736rexrd 8876 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
38 elicc2 10710 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
391, 3, 38syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
4039biimpa 470 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
4140simp3d 969 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
42 iooss2 10687 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR*  /\  x  <_  B )  ->  ( A (,) x )  C_  ( A (,) B ) )
4337, 41, 42syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  ( A (,) B ) )
44 ioombl 18917 . . . . . . . . . . . . . 14  |-  ( A (,) x )  e. 
dom  vol
4544a1i 10 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  e.  dom  vol )
4634a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
4722feqmptd 5536 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) ) )
4847, 19eqeltrrd 2358 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  ( ( RR  _D  F ) `  t
) )  e.  L ^1 )
4948adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L ^1 )
5043, 45, 46, 49iblss 19154 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) x
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L ^1 )
5135, 50itgcl 19133 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
52 ffvelrn 5624 . . . . . . . . . . . 12  |-  ( ( F : ( A [,] B ) --> CC 
/\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
5326, 52sylan 457 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
5451, 53subcld 9152 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) )  e.  CC )
5511tgioo2 18304 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 18321 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 3, 56syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5831, 33, 54, 55, 11, 57dvmptntr 19315 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) ) )
59 reex 8823 . . . . . . . . . . . 12  |-  RR  e.  _V
6059prid1 3734 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
6160a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
62 ioossicc 10730 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  ( A [,] B )
6362sseli 3176 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
6463, 51sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
65 ffvelrn 5624 . . . . . . . . . . 11  |-  ( ( ( RR  _D  F
) : ( A (,) B ) --> CC 
/\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
6622, 65sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
6714, 1, 3, 5, 20, 19ftc1cn 19385 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  F ) )
6831, 33, 51, 55, 11, 57dvmptntr 19315 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t ) ) )
6922feqmptd 5536 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 x ) ) )
7067, 68, 693eqtr3d 2323 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7163, 53sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  CC )
7231, 33, 53, 55, 11, 57dvmptntr 19315 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) ) )
7327oveq2d 5835 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( x  e.  ( A [,] B
)  |->  ( F `  x ) ) ) )
7473, 69eqtr3d 2317 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7572, 74eqtr3d 2317 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
7661, 64, 66, 70, 71, 66, 75dvmptsub 19311 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  x
)  -  ( ( RR  _D  F ) `
 x ) ) ) )
7766subidd 9140 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  -  ( ( RR 
_D  F ) `  x ) )  =  0 )
7877mpteq2dva 4106 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  x )  -  (
( RR  _D  F
) `  x )
) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
7958, 76, 783eqtrd 2319 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
80 fconstmpt 4730 . . . . . . . 8  |-  ( ( A (,) B )  X.  { 0 } )  =  ( x  e.  ( A (,) B )  |->  0 )
8179, 80syl6eqr 2333 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( ( A (,) B
)  X.  { 0 } ) )
821, 3, 29, 81dveq0 19342 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  =  ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) )
8382fveq1d 5487 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) `  B ) )
84 oveq2 5827 . . . . . . . . 9  |-  ( x  =  B  ->  ( A (,) x )  =  ( A (,) B
) )
85 itgeq1 19122 . . . . . . . . 9  |-  ( ( A (,) x )  =  ( A (,) B )  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
8684, 85syl 15 . . . . . . . 8  |-  ( x  =  B  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
87 fveq2 5485 . . . . . . . 8  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
8886, 87oveq12d 5837 . . . . . . 7  |-  ( x  =  B  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
) )
89 eqid 2283 . . . . . . 7  |-  ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) )  =  ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) )
90 ovex 5844 . . . . . . 7  |-  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) )  e. 
_V
9188, 89, 90fvmpt 5563 . . . . . 6  |-  ( B  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
927, 91syl 15 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
9383, 92eqtr3d 2317 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  B ) ) )
94 lbicc2 10747 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
952, 4, 5, 94syl3anc 1182 . . . . 5  |-  ( ph  ->  A  e.  ( A [,] B ) )
96 oveq2 5827 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( A (,) x )  =  ( A (,) A
) )
97 iooid 10679 . . . . . . . . . . 11  |-  ( A (,) A )  =  (/)
9896, 97syl6eq 2331 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A (,) x )  =  (/) )
99 itgeq1 19122 . . . . . . . . . 10  |-  ( ( A (,) x )  =  (/)  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
10098, 99syl 15 . . . . . . . . 9  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
101 itg0 19129 . . . . . . . . 9  |-  S. (/) ( ( RR  _D  F ) `  t
)  _d t  =  0
102100, 101syl6eq 2331 . . . . . . . 8  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  0 )
103 fveq2 5485 . . . . . . . 8  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
104102, 103oveq12d 5837 . . . . . . 7  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( 0  -  ( F `  A )
) )
105 df-neg 9035 . . . . . . 7  |-  -u ( F `  A )  =  ( 0  -  ( F `  A
) )
106104, 105syl6eqr 2333 . . . . . 6  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  = 
-u ( F `  A ) )
107 negex 9045 . . . . . 6  |-  -u ( F `  A )  e.  _V
108106, 89, 107fvmpt 5563 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
)  =  -u ( F `  A )
)
10995, 108syl 15 . . . 4  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
)  =  -u ( F `  A )
)
11010, 93, 1093eqtr3d 2323 . . 3  |-  ( ph  ->  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
)  =  -u ( F `  A )
)
111110oveq2d 5835 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  ( ( F `  B )  +  -u ( F `  A ) ) )
112 ffvelrn 5624 . . . 4  |-  ( ( F : ( A [,] B ) --> CC 
/\  B  e.  ( A [,] B ) )  ->  ( F `  B )  e.  CC )
11326, 7, 112syl2anc 642 . . 3  |-  ( ph  ->  ( F `  B
)  e.  CC )
11434a1i 10 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  t )  e.  _V )
115114, 48itgcl 19133 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  e.  CC )
116113, 115pncan3d 9155 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t )
117 ffvelrn 5624 . . . 4  |-  ( ( F : ( A [,] B ) --> CC 
/\  A  e.  ( A [,] B ) )  ->  ( F `  A )  e.  CC )
11826, 95, 117syl2anc 642 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
119113, 118negsubd 9158 . 2  |-  ( ph  ->  ( ( F `  B )  +  -u ( F `  A ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
120111, 116, 1193eqtr3d 2323 1  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   (/)c0 3455   {csn 3640   {cpr 3641   class class class wbr 4023    e. cmpt 4077    X. cxp 4685   dom cdm 4687   ran crn 4688   -->wf 5216   ` cfv 5220  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732    + caddc 8735   RR*cxr 8861    <_ cle 8863    - cmin 9032   -ucneg 9033   (,)cioo 10651   [,]cicc 10654   TopOpenctopn 13321   topGenctg 13337  ℂfldccnfld 16372   intcnt 16749    Cn ccn 16949    tX ctx 17250   -cn->ccncf 18375   volcvol 18818   L ^1cibl 18967   S.citg 18968    _D cdv 19208
This theorem is referenced by:  ftc2ditglem  19387  itgparts  19389  itgsubstlem  19390  areacirc  24341  lhe4.4ex1a  26957  itgsin0pilem1  27155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cc 8056  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-ofr 6040  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10655  df-ioc 10656  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-rlim 11958  df-sum 12154  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-mulg 14487  df-cntz 14788  df-cmn 15086  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cld 16751  df-ntr 16752  df-cls 16753  df-nei 16830  df-lp 16863  df-perf 16864  df-cn 16952  df-cnp 16953  df-haus 17038  df-cmp 17109  df-tx 17252  df-hmeo 17441  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630  df-xms 17880  df-ms 17881  df-tms 17882  df-cncf 18377  df-ovol 18819  df-vol 18820  df-mbf 18970  df-itg1 18971  df-itg2 18972  df-ibl 18973  df-itg 18974  df-0p 19020  df-limc 19211  df-dv 19212
  Copyright terms: Public domain W3C validator