MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funco Unicode version

Theorem funco 5292
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )

Proof of Theorem funco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmo 5271 . . . . 5  |-  ( Fun 
G  ->  E* z  x G z )
2 funmo 5271 . . . . . 6  |-  ( Fun 
F  ->  E* y 
z F y )
32alrimiv 1617 . . . . 5  |-  ( Fun 
F  ->  A. z E* y  z F
y )
4 moexexv 2213 . . . . 5  |-  ( ( E* z  x G z  /\  A. z E* y  z F
y )  ->  E* y E. z ( x G z  /\  z F y ) )
51, 3, 4syl2anr 464 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  E* y E. z ( x G z  /\  z F y ) )
65alrimiv 1617 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x E* y E. z ( x G z  /\  z F y ) )
7 funopab 5287 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }  <->  A. x E* y E. z ( x G z  /\  z F y ) )
86, 7sylibr 203 . 2  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  { <. x ,  y >.  |  E. z ( x G z  /\  z F y ) } )
9 df-co 4698 . . 3  |-  ( F  o.  G )  =  { <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }
109funeqi 5275 . 2  |-  ( Fun  ( F  o.  G
)  <->  Fun  { <. x ,  y >.  |  E. z ( x G z  /\  z F y ) } )
118, 10sylibr 203 1  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528   E*wmo 2144   class class class wbr 4023   {copab 4076    o. ccom 4693   Fun wfun 5249
This theorem is referenced by:  fnco  5352  f1co  5446  curry1  6210  curry2  6213  tposfun  6250  fin23lem30  7968  smobeth  8208  hashkf  11339  xppreima  23211  domrancur1b  25200  domrancur1c  25202  funresfunco  27988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-fun 5257
  Copyright terms: Public domain W3C validator