MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funco Structured version   Unicode version

Theorem funco 5483
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )

Proof of Theorem funco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmo 5462 . . . . 5  |-  ( Fun 
G  ->  E* z  x G z )
2 funmo 5462 . . . . . 6  |-  ( Fun 
F  ->  E* y 
z F y )
32alrimiv 1641 . . . . 5  |-  ( Fun 
F  ->  A. z E* y  z F
y )
4 moexexv 2350 . . . . 5  |-  ( ( E* z  x G z  /\  A. z E* y  z F
y )  ->  E* y E. z ( x G z  /\  z F y ) )
51, 3, 4syl2anr 465 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  E* y E. z ( x G z  /\  z F y ) )
65alrimiv 1641 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  A. x E* y E. z ( x G z  /\  z F y ) )
7 funopab 5478 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }  <->  A. x E* y E. z ( x G z  /\  z F y ) )
86, 7sylibr 204 . 2  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  { <. x ,  y >.  |  E. z ( x G z  /\  z F y ) } )
9 df-co 4879 . . 3  |-  ( F  o.  G )  =  { <. x ,  y
>.  |  E. z
( x G z  /\  z F y ) }
109funeqi 5466 . 2  |-  ( Fun  ( F  o.  G
)  <->  Fun  { <. x ,  y >.  |  E. z ( x G z  /\  z F y ) } )
118, 10sylibr 204 1  |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549   E.wex 1550   E*wmo 2281   class class class wbr 4204   {copab 4257    o. ccom 4874   Fun wfun 5440
This theorem is referenced by:  fnco  5545  f1co  5640  curry1  6430  curry2  6433  tposfun  6487  fin23lem30  8212  smobeth  8451  hashkf  11610  xppreima  24049  funresfunco  27920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-fun 5448
  Copyright terms: Public domain W3C validator