MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmen Unicode version

Theorem fundmen 6867
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypothesis
Ref Expression
fundmen.1  |-  F  e. 
_V
Assertion
Ref Expression
fundmen  |-  ( Fun 
F  ->  dom  F  ~~  F )

Proof of Theorem fundmen
StepHypRef Expression
1 fundmen.1 . . . 4  |-  F  e. 
_V
21dmex 4894 . . 3  |-  dom  F  e.  _V
32a1i 12 . 2  |-  ( Fun 
F  ->  dom  F  e. 
_V )
41a1i 12 . 2  |-  ( Fun 
F  ->  F  e.  _V )
5 funfvop 5536 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
65ex 425 . 2  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  <. x ,  ( F `  x ) >.  e.  F
) )
7 funrel 5176 . . 3  |-  ( Fun 
F  ->  Rel  F )
8 elreldm 4856 . . . 4  |-  ( ( Rel  F  /\  y  e.  F )  ->  |^| |^| y  e.  dom  F )
98ex 425 . . 3  |-  ( Rel 
F  ->  ( y  e.  F  ->  |^| |^| y  e.  dom  F ) )
107, 9syl 17 . 2  |-  ( Fun 
F  ->  ( y  e.  F  ->  |^| |^| y  e.  dom  F ) )
11 df-rel 4641 . . . . . . . . 9  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
127, 11sylib 190 . . . . . . . 8  |-  ( Fun 
F  ->  F  C_  ( _V  X.  _V ) )
1312sselda 3122 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  F )  ->  y  e.  ( _V  X.  _V ) )
14 elvv 4701 . . . . . . 7  |-  ( y  e.  ( _V  X.  _V )  <->  E. z E. w  y  =  <. z ,  w >. )
1513, 14sylib 190 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  F )  ->  E. z E. w  y  =  <. z ,  w >. )
16 inteq 3806 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. z ,  w >.  ->  |^| y  =  |^| <.
z ,  w >. )
1716inteqd 3808 . . . . . . . . . . . . . . . 16  |-  ( y  =  <. z ,  w >.  ->  |^| |^| y  =  |^| |^|
<. z ,  w >. )
18 vex 2743 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
19 vex 2743 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
2018, 19op1stb 4506 . . . . . . . . . . . . . . . 16  |-  |^| |^| <. z ,  w >.  =  z
2117, 20syl6eq 2304 . . . . . . . . . . . . . . 15  |-  ( y  =  <. z ,  w >.  ->  |^| |^| y  =  z )
22 eqeq1 2262 . . . . . . . . . . . . . . 15  |-  ( x  =  |^| |^| y  ->  ( x  =  z  <->  |^| |^| y  =  z ) )
2321, 22syl5ibr 214 . . . . . . . . . . . . . 14  |-  ( x  =  |^| |^| y  ->  ( y  =  <. z ,  w >.  ->  x  =  z ) )
24 opeq1 3737 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  <. x ,  w >.  =  <. z ,  w >. )
2523, 24syl6 31 . . . . . . . . . . . . 13  |-  ( x  =  |^| |^| y  ->  ( y  =  <. z ,  w >.  ->  <. x ,  w >.  =  <. z ,  w >. )
)
2625imp 420 . . . . . . . . . . . 12  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  -> 
<. x ,  w >.  = 
<. z ,  w >. )
27 eqeq2 2265 . . . . . . . . . . . . . 14  |-  ( <.
x ,  w >.  = 
<. z ,  w >.  -> 
( y  =  <. x ,  w >.  <->  y  =  <. z ,  w >. ) )
2827biimprcd 218 . . . . . . . . . . . . 13  |-  ( y  =  <. z ,  w >.  ->  ( <. x ,  w >.  =  <. z ,  w >.  ->  y  =  <. x ,  w >. ) )
2928adantl 454 . . . . . . . . . . . 12  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  ( <. x ,  w >.  =  <. z ,  w >.  ->  y  =  <. x ,  w >. )
)
3026, 29mpd 16 . . . . . . . . . . 11  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  y  =  <. x ,  w >. )
3130ancoms 441 . . . . . . . . . 10  |-  ( ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y )  -> 
y  =  <. x ,  w >. )
3231adantl 454 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  y  =  <. x ,  w >. )
3330eleq1d 2322 . . . . . . . . . . . . . . 15  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  ( y  e.  F  <->  <.
x ,  w >.  e.  F ) )
3433adantl 454 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( y  e.  F  <->  <. x ,  w >.  e.  F ) )
35 funopfv 5461 . . . . . . . . . . . . . . 15  |-  ( Fun 
F  ->  ( <. x ,  w >.  e.  F  ->  ( F `  x
)  =  w ) )
3635adantr 453 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( <. x ,  w >.  e.  F  ->  ( F `  x
)  =  w ) )
3734, 36sylbid 208 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( y  e.  F  ->  ( F `
 x )  =  w ) )
3837exp32 591 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  =  |^| |^| y  ->  (
y  =  <. z ,  w >.  ->  ( y  e.  F  ->  ( F `  x )  =  w ) ) ) )
3938com24 83 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( y  e.  F  ->  ( y  =  <. z ,  w >.  ->  ( x  = 
|^| |^| y  ->  ( F `  x )  =  w ) ) ) )
4039imp43 581 . . . . . . . . . 10  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  ( F `  x )  =  w )
4140opeq2d 3744 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  <. x ,  ( F `  x )
>.  =  <. x ,  w >. )
4232, 41eqtr4d 2291 . . . . . . . 8  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  y  =  <. x ,  ( F `  x ) >. )
4342exp32 591 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  F )  ->  (
y  =  <. z ,  w >.  ->  ( x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
) )
4443exlimdvv 2027 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  F )  ->  ( E. z E. w  y  =  <. z ,  w >.  ->  ( x  = 
|^| |^| y  ->  y  =  <. x ,  ( F `  x )
>. ) ) )
4515, 44mpd 16 . . . . 5  |-  ( ( Fun  F  /\  y  e.  F )  ->  (
x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
)
4645adantrl 699 . . . 4  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
)
47 inteq 3806 . . . . . 6  |-  ( y  =  <. x ,  ( F `  x )
>.  ->  |^| y  =  |^| <.
x ,  ( F `
 x ) >.
)
4847inteqd 3808 . . . . 5  |-  ( y  =  <. x ,  ( F `  x )
>.  ->  |^| |^| y  =  |^| |^|
<. x ,  ( F `
 x ) >.
)
49 vex 2743 . . . . . 6  |-  x  e. 
_V
50 fvex 5437 . . . . . 6  |-  ( F `
 x )  e. 
_V
5149, 50op1stb 4506 . . . . 5  |-  |^| |^| <. x ,  ( F `  x ) >.  =  x
5248, 51syl6req 2305 . . . 4  |-  ( y  =  <. x ,  ( F `  x )
>.  ->  x  =  |^| |^| y )
5346, 52impbid1 196 . . 3  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
x  =  |^| |^| y  <->  y  =  <. x ,  ( F `  x )
>. ) )
5453ex 425 . 2  |-  ( Fun 
F  ->  ( (
x  e.  dom  F  /\  y  e.  F
)  ->  ( x  =  |^| |^| y  <->  y  =  <. x ,  ( F `
 x ) >.
) ) )
553, 4, 6, 10, 54en3d 6831 1  |-  ( Fun 
F  ->  dom  F  ~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   _Vcvv 2740    C_ wss 3094   <.cop 3584   |^|cint 3803   class class class wbr 3963    X. cxp 4624   dom cdm 4626   Rel wrel 4631   Fun wfun 4632   ` cfv 4638    ~~ cen 6793
This theorem is referenced by:  fundmeng  6868  infmap2  7777  fnctartar  25239  fnctartar2  25240
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-int 3804  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-en 6797
  Copyright terms: Public domain W3C validator