MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2 Unicode version

Theorem funfv2 5549
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv2  |-  ( Fun 
F  ->  ( F `  A )  =  U. { y  |  A F y } )
Distinct variable groups:    y, A    y, F

Proof of Theorem funfv2
StepHypRef Expression
1 funfv 5548 . 2  |-  ( Fun 
F  ->  ( F `  A )  =  U. ( F " { A } ) )
2 funrel 5238 . . . 4  |-  ( Fun 
F  ->  Rel  F )
3 relimasn 5035 . . . 4  |-  ( Rel 
F  ->  ( F " { A } )  =  { y  |  A F y } )
42, 3syl 15 . . 3  |-  ( Fun 
F  ->  ( F " { A } )  =  { y  |  A F y } )
54unieqd 3839 . 2  |-  ( Fun 
F  ->  U. ( F " { A }
)  =  U. {
y  |  A F y } )
61, 5eqtrd 2316 1  |-  ( Fun 
F  ->  ( F `  A )  =  U. { y  |  A F y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   {cab 2270   {csn 3641   U.cuni 3828   class class class wbr 4024   "cima 4691   Rel wrel 4693   Fun wfun 5215   ` cfv 5221
This theorem is referenced by:  funfv2f  5550
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-fv 5229
  Copyright terms: Public domain W3C validator