Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Unicode version

Theorem funi 5476
 Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi

Proof of Theorem funi
StepHypRef Expression
1 reli 4995 . 2
2 relcnv 5235 . . . . 5
3 coi2 5379 . . . . 5
42, 3ax-mp 8 . . . 4
5 cnvi 5269 . . . 4
64, 5eqtri 2456 . . 3
76eqimssi 3395 . 2
8 df-fun 5449 . 2
91, 7, 8mpbir2an 887 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wss 3313   cid 4486  ccnv 4870   ccom 4875   wrel 4876   wfun 5441 This theorem is referenced by:  cnvresid  5516  fnresi  5555  fvi  5776  ssdomg  7146  tendo02  31522 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pr 4396 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-br 4206  df-opab 4260  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-fun 5449
 Copyright terms: Public domain W3C validator