MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaex Unicode version

Theorem funimaex 5233
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 4071. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
Hypothesis
Ref Expression
zfrep5.1  |-  B  e. 
_V
Assertion
Ref Expression
funimaex  |-  ( Fun 
A  ->  ( A " B )  e.  _V )

Proof of Theorem funimaex
StepHypRef Expression
1 zfrep5.1 . 2  |-  B  e. 
_V
2 funimaexg 5232 . 2  |-  ( ( Fun  A  /\  B  e.  _V )  ->  ( A " B )  e. 
_V )
31, 2mpan2 655 1  |-  ( Fun 
A  ->  ( A " B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1621   _Vcvv 2740   "cima 4629   Fun wfun 4632
This theorem is referenced by:  isarep2  5235  isofr  5738  isose  5739  f1oweALT  5750  f1opw  5971  tz9.12lem2  7393  hsmexlem4  7988  hsmexlem5  7989  zorn2lem7  8062  uniimadom  8099  zexALT  9974  fbasrn  17506  fnwe2lem2  26480
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-id 4246  df-xp 4640  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648
  Copyright terms: Public domain W3C validator