MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaex Unicode version

Theorem funimaex 5295
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 4132. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
Hypothesis
Ref Expression
zfrep5.1  |-  B  e. 
_V
Assertion
Ref Expression
funimaex  |-  ( Fun 
A  ->  ( A " B )  e.  _V )

Proof of Theorem funimaex
StepHypRef Expression
1 zfrep5.1 . 2  |-  B  e. 
_V
2 funimaexg 5294 . 2  |-  ( ( Fun  A  /\  B  e.  _V )  ->  ( A " B )  e. 
_V )
31, 2mpan2 654 1  |-  ( Fun 
A  ->  ( A " B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1685   _Vcvv 2789   "cima 4691   Fun wfun 5215
This theorem is referenced by:  isarep2  5297  isofr  5800  isose  5801  f1oweALT  5812  f1opw  6033  tz9.12lem2  7455  hsmexlem4  8050  hsmexlem5  8051  zorn2lem7  8124  uniimadom  8161  zexALT  10037  fbasrn  17573  fnwe2lem2  26547
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-opab 4079  df-id 4308  df-xp 4694  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223
  Copyright terms: Public domain W3C validator