MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Unicode version

Theorem funimaexg 5267
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexg
StepHypRef Expression
1 imaeq2 4996 . . . . 5  |-  ( w  =  B  ->  ( A " w )  =  ( A " B
) )
21eleq1d 2324 . . . 4  |-  ( w  =  B  ->  (
( A " w
)  e.  _V  <->  ( A " B )  e.  _V ) )
32imbi2d 309 . . 3  |-  ( w  =  B  ->  (
( Fun  A  ->  ( A " w )  e.  _V )  <->  ( Fun  A  ->  ( A " B )  e.  _V ) ) )
4 dffun5 5207 . . . . 5  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
54simprbi 452 . . . 4  |-  ( Fun 
A  ->  A. x E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z ) )
6 nfv 1629 . . . . . 6  |-  F/ z
<. x ,  y >.  e.  A
76axrep4 4109 . . . . 5  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  ->  E. z A. y ( y  e.  z  <->  E. x
( x  e.  w  /\  <. x ,  y
>.  e.  A ) ) )
8 isset 2767 . . . . . 6  |-  ( ( A " w )  e.  _V  <->  E. z 
z  =  ( A
" w ) )
9 dfima3 5003 . . . . . . . . 9  |-  ( A
" w )  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) }
109eqeq2i 2268 . . . . . . . 8  |-  ( z  =  ( A "
w )  <->  z  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) } )
11 abeq2 2363 . . . . . . . 8  |-  ( z  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) }  <->  A. y
( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
1210, 11bitri 242 . . . . . . 7  |-  ( z  =  ( A "
w )  <->  A. y
( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
1312exbii 1580 . . . . . 6  |-  ( E. z  z  =  ( A " w )  <->  E. z A. y ( y  e.  z  <->  E. x
( x  e.  w  /\  <. x ,  y
>.  e.  A ) ) )
148, 13bitri 242 . . . . 5  |-  ( ( A " w )  e.  _V  <->  E. z A. y ( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
157, 14sylibr 205 . . . 4  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  -> 
( A " w
)  e.  _V )
165, 15syl 17 . . 3  |-  ( Fun 
A  ->  ( A " w )  e.  _V )
173, 16vtoclg 2818 . 2  |-  ( B  e.  C  ->  ( Fun  A  ->  ( A " B )  e.  _V ) )
1817impcom 421 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2244   _Vcvv 2763   <.cop 3617   "cima 4664   Rel wrel 4666   Fun wfun 4667
This theorem is referenced by:  funimaex  5268  resfunexg  5671  resfunexgALT  5672  fnexALT  5676  wdomimag  7269  carduniima  7691  dfac12lem2  7738  ttukeylem3  8106  nnexALT  9716  seqex  11015  fbasrn  17542  elfm3  17608  axfelem1  23716
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-id 4281  df-xp 4675  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683
  Copyright terms: Public domain W3C validator