MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Unicode version

Theorem funimaexg 5470
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 5139 . . . . 5  |-  ( w  =  B  ->  ( A " w )  =  ( A " B
) )
21eleq1d 2453 . . . 4  |-  ( w  =  B  ->  (
( A " w
)  e.  _V  <->  ( A " B )  e.  _V ) )
32imbi2d 308 . . 3  |-  ( w  =  B  ->  (
( Fun  A  ->  ( A " w )  e.  _V )  <->  ( Fun  A  ->  ( A " B )  e.  _V ) ) )
4 dffun5 5407 . . . . 5  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
54simprbi 451 . . . 4  |-  ( Fun 
A  ->  A. x E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z ) )
6 nfv 1626 . . . . . 6  |-  F/ z
<. x ,  y >.  e.  A
76axrep4 4265 . . . . 5  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  ->  E. z A. y ( y  e.  z  <->  E. x
( x  e.  w  /\  <. x ,  y
>.  e.  A ) ) )
8 isset 2903 . . . . . 6  |-  ( ( A " w )  e.  _V  <->  E. z 
z  =  ( A
" w ) )
9 dfima3 5146 . . . . . . . . 9  |-  ( A
" w )  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) }
109eqeq2i 2397 . . . . . . . 8  |-  ( z  =  ( A "
w )  <->  z  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) } )
11 abeq2 2492 . . . . . . . 8  |-  ( z  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) }  <->  A. y
( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
1210, 11bitri 241 . . . . . . 7  |-  ( z  =  ( A "
w )  <->  A. y
( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
1312exbii 1589 . . . . . 6  |-  ( E. z  z  =  ( A " w )  <->  E. z A. y ( y  e.  z  <->  E. x
( x  e.  w  /\  <. x ,  y
>.  e.  A ) ) )
148, 13bitri 241 . . . . 5  |-  ( ( A " w )  e.  _V  <->  E. z A. y ( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
157, 14sylibr 204 . . . 4  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  -> 
( A " w
)  e.  _V )
165, 15syl 16 . . 3  |-  ( Fun 
A  ->  ( A " w )  e.  _V )
173, 16vtoclg 2954 . 2  |-  ( B  e.  C  ->  ( Fun  A  ->  ( A " B )  e.  _V ) )
1817impcom 420 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1717   {cab 2373   _Vcvv 2899   <.cop 3760   "cima 4821   Rel wrel 4823   Fun wfun 5388
This theorem is referenced by:  funimaex  5471  resfunexg  5896  resfunexgALT  5897  fnexALT  5901  wdomimag  7488  carduniima  7910  dfac12lem2  7957  ttukeylem3  8324  nnexALT  9934  seqex  11252  fbasrn  17837  elfm3  17903  nobndlem1  25370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-fun 5396
  Copyright terms: Public domain W3C validator