MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopfvb Unicode version

Theorem funopfvb 5729
Description: Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
funopfvb  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  B  <->  <. A ,  B >.  e.  F ) )

Proof of Theorem funopfvb
StepHypRef Expression
1 funfn 5441 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 fnopfvb 5727 . 2  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  ( ( F `  A )  =  B  <->  <. A ,  B >.  e.  F ) )
31, 2sylanb 459 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  B  <->  <. A ,  B >.  e.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   <.cop 3777   dom cdm 4837   Fun wfun 5407    Fn wfn 5408   ` cfv 5413
This theorem is referenced by:  dmfco  5756  funfvop  5801  f1eqcocnv  5987  usgraedgop  21334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421
  Copyright terms: Public domain W3C validator