Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpsstri Unicode version

Theorem funpsstri 23522
Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
funpsstri  |-  ( ( Fun  H  /\  ( F  C_  H  /\  G  C_  H )  /\  ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F ) )  ->  ( F  C.  G  \/  F  =  G  \/  G  C.  F ) )

Proof of Theorem funpsstri
StepHypRef Expression
1 funssres 5259 . . . . . 6  |-  ( ( Fun  H  /\  F  C_  H )  ->  ( H  |`  dom  F )  =  F )
21ex 425 . . . . 5  |-  ( Fun 
H  ->  ( F  C_  H  ->  ( H  |` 
dom  F )  =  F ) )
3 funssres 5259 . . . . . 6  |-  ( ( Fun  H  /\  G  C_  H )  ->  ( H  |`  dom  G )  =  G )
43ex 425 . . . . 5  |-  ( Fun 
H  ->  ( G  C_  H  ->  ( H  |` 
dom  G )  =  G ) )
52, 4anim12d 548 . . . 4  |-  ( Fun 
H  ->  ( ( F  C_  H  /\  G  C_  H )  ->  (
( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G ) ) )
6 ssres2 4981 . . . . . 6  |-  ( dom 
F  C_  dom  G  -> 
( H  |`  dom  F
)  C_  ( H  |` 
dom  G ) )
7 ssres2 4981 . . . . . 6  |-  ( dom 
G  C_  dom  F  -> 
( H  |`  dom  G
)  C_  ( H  |` 
dom  F ) )
86, 7orim12i 504 . . . . 5  |-  ( ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F )  ->  (
( H  |`  dom  F
)  C_  ( H  |` 
dom  G )  \/  ( H  |`  dom  G
)  C_  ( H  |` 
dom  F ) ) )
9 sseq12 3202 . . . . . 6  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( H  |`  dom  F )  C_  ( H  |`  dom  G
)  <->  F  C_  G ) )
10 sseq12 3202 . . . . . . 7  |-  ( ( ( H  |`  dom  G
)  =  G  /\  ( H  |`  dom  F
)  =  F )  ->  ( ( H  |`  dom  G )  C_  ( H  |`  dom  F
)  <->  G  C_  F ) )
1110ancoms 441 . . . . . 6  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( H  |`  dom  G )  C_  ( H  |`  dom  F
)  <->  G  C_  F ) )
129, 11orbi12d 692 . . . . 5  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( ( H  |`  dom  F ) 
C_  ( H  |`  dom  G )  \/  ( H  |`  dom  G ) 
C_  ( H  |`  dom  F ) )  <->  ( F  C_  G  \/  G  C_  F ) ) )
138, 12syl5ib 212 . . . 4  |-  ( ( ( H  |`  dom  F
)  =  F  /\  ( H  |`  dom  G
)  =  G )  ->  ( ( dom 
F  C_  dom  G  \/  dom  G  C_  dom  F )  ->  ( F  C_  G  \/  G  C_  F
) ) )
145, 13syl6 31 . . 3  |-  ( Fun 
H  ->  ( ( F  C_  H  /\  G  C_  H )  ->  (
( dom  F  C_  dom  G  \/  dom  G  C_  dom  F )  ->  ( F  C_  G  \/  G  C_  F ) ) ) )
15143imp 1147 . 2  |-  ( ( Fun  H  /\  ( F  C_  H  /\  G  C_  H )  /\  ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F ) )  ->  ( F  C_  G  \/  G  C_  F ) )
16 sspsstri 3279 . 2  |-  ( ( F  C_  G  \/  G  C_  F )  <->  ( F  C.  G  \/  F  =  G  \/  G  C.  F ) )
1715, 16sylib 190 1  |-  ( ( Fun  H  /\  ( F  C_  H  /\  G  C_  H )  /\  ( dom  F  C_  dom  G  \/  dom  G  C_  dom  F ) )  ->  ( F  C.  G  \/  F  =  G  \/  G  C.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    \/ w3o 935    /\ w3a 936    = wceq 1624    C_ wss 3153    C. wpss 3154   dom cdm 4688    |` cres 4690   Fun wfun 5215
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-opab 4079  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-res 4700  df-fun 5223
  Copyright terms: Public domain W3C validator