MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funrnex Unicode version

Theorem funrnex 5899
Description: If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5895. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
funrnex  |-  ( dom 
F  e.  B  -> 
( Fun  F  ->  ran 
F  e.  _V )
)

Proof of Theorem funrnex
StepHypRef Expression
1 funex 5895 . . 3  |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )
21ex 424 . 2  |-  ( Fun 
F  ->  ( dom  F  e.  B  ->  F  e.  _V ) )
3 rnexg 5064 . 2  |-  ( F  e.  _V  ->  ran  F  e.  _V )
42, 3syl6com 33 1  |-  ( dom 
F  e.  B  -> 
( Fun  F  ->  ran 
F  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   _Vcvv 2892   dom cdm 4811   ran crn 4812   Fun wfun 5381
This theorem is referenced by:  zfrep6  5900  fornex  5902  tz7.48-3  6630  inf0  7502  noinfepOLD  7541  axcc2lem  8242  zorn2lem4  8305  fnct  23939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395
  Copyright terms: Public domain W3C validator