MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsng Unicode version

Theorem funsng 5155
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
Assertion
Ref Expression
funsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )

Proof of Theorem funsng
StepHypRef Expression
1 funcnvsn 5154 . 2  |-  Fun  `' { <. B ,  A >. }
2 cnvsng 5064 . . . 4  |-  ( ( B  e.  W  /\  A  e.  V )  ->  `' { <. B ,  A >. }  =  { <. A ,  B >. } )
32ancoms 441 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. B ,  A >. }  =  { <. A ,  B >. } )
43funeqd 5134 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Fun  `' { <. B ,  A >. }  <->  Fun  { <. A ,  B >. } ) )
51, 4mpbii 204 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {csn 3544   <.cop 3547   `'ccnv 4579   Fun wfun 4586
This theorem is referenced by:  fnsng  5156  funsn  5157  funprg  5158  tfrlem10  6289  strle1  13113  bnj519  27550  bnj150  27694
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-fun 4602
  Copyright terms: Public domain W3C validator