MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssres Unicode version

Theorem funssres 5296
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )

Proof of Theorem funssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3176 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  <. x ,  y >.  e.  F
) )
2 vex 2793 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2793 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 4884 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
54a1i 10 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  x  e. 
dom  G ) )
61, 5jcad 519 . . . . . 6  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
76adantl 452 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
8 funeu2 5281 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  <. x ,  y >.  e.  F
)  ->  E! y <. x ,  y >.  e.  F )
92eldm2 4879 . . . . . . . . . . . . . 14  |-  ( x  e.  dom  G  <->  E. y <. x ,  y >.  e.  G )
101ancrd 537 . . . . . . . . . . . . . . 15  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1110eximdv 1610 . . . . . . . . . . . . . 14  |-  ( G 
C_  F  ->  ( E. y <. x ,  y
>.  e.  G  ->  E. y
( <. x ,  y
>.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
129, 11syl5bi 208 . . . . . . . . . . . . 13  |-  ( G 
C_  F  ->  (
x  e.  dom  G  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1312imp 418 . . . . . . . . . . . 12  |-  ( ( G  C_  F  /\  x  e.  dom  G )  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )
14 eupick 2208 . . . . . . . . . . . 12  |-  ( ( E! y <. x ,  y >.  e.  F  /\  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  G
) )
158, 13, 14syl2an 463 . . . . . . . . . . 11  |-  ( ( ( Fun  F  /\  <.
x ,  y >.  e.  F )  /\  ( G  C_  F  /\  x  e.  dom  G ) )  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) )
1615exp43 595 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( <. x ,  y >.  e.  F  ->  ( G  C_  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1716com23 72 . . . . . . . . 9  |-  ( Fun 
F  ->  ( G  C_  F  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1817imp 418 . . . . . . . 8  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  -> 
( <. x ,  y
>.  e.  F  ->  <. x ,  y >.  e.  G
) ) ) )
1918com34 77 . . . . . . 7  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( <.
x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) ) )
2019pm2.43d 44 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) )
2120imp3a 420 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( <. x ,  y
>.  e.  F  /\  x  e.  dom  G )  ->  <. x ,  y >.  e.  G ) )
227, 21impbid 183 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
233opelres 4962 . . . 4  |-  ( <.
x ,  y >.  e.  ( F  |`  dom  G
)  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) )
2422, 23syl6rbbr 255 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  ( F  |`  dom  G
)  <->  <. x ,  y
>.  e.  G ) )
2524alrimivv 1620 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) )
26 relres 4985 . . 3  |-  Rel  ( F  |`  dom  G )
27 funrel 5274 . . . 4  |-  ( Fun 
F  ->  Rel  F )
28 relss 4777 . . . 4  |-  ( G 
C_  F  ->  ( Rel  F  ->  Rel  G ) )
2927, 28mpan9 455 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  Rel  G )
30 eqrel 4779 . . 3  |-  ( ( Rel  ( F  |`  dom  G )  /\  Rel  G )  ->  ( ( F  |`  dom  G )  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3126, 29, 30sylancr 644 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3225, 31mpbird 223 1  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1529   E.wex 1530    = wceq 1625    e. wcel 1686   E!weu 2145    C_ wss 3154   <.cop 3645   dom cdm 4691    |` cres 4693   Rel wrel 4696   Fun wfun 5251
This theorem is referenced by:  fun2ssres  5297  funcnvres  5323  funssfv  5545  oprssov  5991  isngp2  18121  dvres3  19265  dvres3a  19266  dchrelbas2  20478  funpsstri  24123  funsseq  24127  oprssopvg  25045  svs2  25498  svs3  25499
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-br 4026  df-opab 4080  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-res 4703  df-fun 5259
  Copyright terms: Public domain W3C validator