MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funun Unicode version

Theorem funun 5296
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )

Proof of Theorem funun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5272 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 funrel 5272 . . . . 5  |-  ( Fun 
G  ->  Rel  G )
31, 2anim12i 549 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  ( Rel  F  /\  Rel  G ) )
4 relun 4802 . . . 4  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
53, 4sylibr 203 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  Rel  ( F  u.  G ) )
65adantr 451 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Rel  ( F  u.  G
) )
7 elun 3316 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( F  u.  G
)  <->  ( <. x ,  y >.  e.  F  \/  <. x ,  y
>.  e.  G ) )
8 elun 3316 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( F  u.  G
)  <->  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )
97, 8anbi12i 678 . . . . . . 7  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( <.
x ,  y >.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) ) )
10 anddi 840 . . . . . . 7  |-  ( ( ( <. x ,  y
>.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )  <-> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
119, 10bitri 240 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
12 disj1 3497 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  dom  G )  =  (/)  <->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
1312biimpi 186 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
141319.21bi 1794 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  F  ->  -.  x  e.  dom  G ) )
15 imnan 411 . . . . . . . . . . 11  |-  ( ( x  e.  dom  F  ->  -.  x  e.  dom  G )  <->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
1614, 15sylib 188 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
17 vex 2791 . . . . . . . . . . . 12  |-  x  e. 
_V
18 vex 2791 . . . . . . . . . . . 12  |-  y  e. 
_V
1917, 18opeldm 4882 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  F  ->  x  e. 
dom  F )
20 vex 2791 . . . . . . . . . . . 12  |-  z  e. 
_V
2117, 20opeldm 4882 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  G  ->  x  e. 
dom  G )
2219, 21anim12i 549 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2316, 22nsyl 113 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )
24 orel2 372 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2523, 24syl 15 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2614con2d 107 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  G  ->  -.  x  e.  dom  F ) )
27 imnan 411 . . . . . . . . . . 11  |-  ( ( x  e.  dom  G  ->  -.  x  e.  dom  F )  <->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2826, 27sylib 188 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2917, 18opeldm 4882 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
3017, 20opeldm 4882 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  F  ->  x  e. 
dom  F )
3129, 30anim12i 549 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( x  e.  dom  G  /\  x  e.  dom  F ) )
3228, 31nsyl 113 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
) )
33 orel1 371 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3432, 33syl 15 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  G  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3525, 34orim12d 811 . . . . . . 7  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3635adantl 452 . . . . . 6  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3711, 36syl5bi 208 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
38 dffun4 5267 . . . . . . . . . 10  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
3938simprbi 450 . . . . . . . . 9  |-  ( Fun 
F  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
403919.21bi 1794 . . . . . . . 8  |-  ( Fun 
F  ->  A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
414019.21bbi 1795 . . . . . . 7  |-  ( Fun 
F  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
42 dffun4 5267 . . . . . . . . . 10  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) ) )
4342simprbi 450 . . . . . . . . 9  |-  ( Fun 
G  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
444319.21bi 1794 . . . . . . . 8  |-  ( Fun 
G  ->  A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
454419.21bbi 1795 . . . . . . 7  |-  ( Fun 
G  ->  ( ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
4641, 45jaao 495 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G )  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4746adantr 451 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4837, 47syld 40 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
y  =  z ) )
4948alrimiv 1617 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
5049alrimivv 1618 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
51 dffun4 5267 . 2  |-  ( Fun  ( F  u.  G
)  <->  ( Rel  ( F  u.  G )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) ) )
526, 50, 51sylanbrc 645 1  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684    u. cun 3150    i^i cin 3151   (/)c0 3455   <.cop 3643   dom cdm 4689   Rel wrel 4694   Fun wfun 5249
This theorem is referenced by:  funprg  5301  funtp  5303  fnun  5350  fvun  5589  tfrlem10  6403  sbthlem7  6977  sbthlem8  6978  fodomr  7012  axdc3lem4  8079  strlemor1  13235  strleun  13238  wfrlem13  24268  bnj1421  29072
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-fun 5257
  Copyright terms: Public domain W3C validator