MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv3 Unicode version

Theorem fv3 5501
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Distinct variable groups:    x, y, F    x, A, y
Dummy variable  z is distinct from all other variables.

Proof of Theorem fv3
StepHypRef Expression
1 elfv 5483 . . 3  |-  ( x  e.  ( F `  A )  <->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
2 bi2 191 . . . . . . . . . 10  |-  ( ( A F y  <->  y  =  z )  ->  (
y  =  z  ->  A F y ) )
32alimi 1547 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  A. y
( y  =  z  ->  A F y ) )
4 vex 2792 . . . . . . . . . 10  |-  z  e. 
_V
5 breq2 4028 . . . . . . . . . 10  |-  ( y  =  z  ->  ( A F y  <->  A F
z ) )
64, 5ceqsalv 2815 . . . . . . . . 9  |-  ( A. y ( y  =  z  ->  A F
y )  <->  A F
z )
73, 6sylib 190 . . . . . . . 8  |-  ( A. y ( A F y  <->  y  =  z )  ->  A F
z )
87anim2i 554 . . . . . . 7  |-  ( ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )  ->  (
x  e.  z  /\  A F z ) )
98eximi 1564 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z
( x  e.  z  /\  A F z ) )
10 elequ2 1690 . . . . . . . 8  |-  ( z  =  y  ->  (
x  e.  z  <->  x  e.  y ) )
11 breq2 4028 . . . . . . . 8  |-  ( z  =  y  ->  ( A F z  <->  A F
y ) )
1210, 11anbi12d 693 . . . . . . 7  |-  ( z  =  y  ->  (
( x  e.  z  /\  A F z )  <->  ( x  e.  y  /\  A F y ) ) )
1312cbvexv 1948 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A F z )  <->  E. y
( x  e.  y  /\  A F y ) )
149, 13sylib 190 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. y
( x  e.  y  /\  A F y ) )
15 19.40 1597 . . . . . . 7  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  ( E. z  x  e.  z  /\  E. z A. y
( A F y  <-> 
y  =  z ) ) )
1615simprd 451 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z A. y ( A F y  <->  y  =  z ) )
17 df-eu 2148 . . . . . 6  |-  ( E! y  A F y  <->  E. z A. y ( A F y  <->  y  =  z ) )
1816, 17sylibr 205 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E! y  A F y )
1914, 18jca 520 . . . 4  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
20 nfeu1 2154 . . . . . . 7  |-  F/ y E! y  A F y
21 nfv 1606 . . . . . . . . 9  |-  F/ y  x  e.  z
22 nfa1 1757 . . . . . . . . 9  |-  F/ y A. y ( A F y  <->  y  =  z )
2321, 22nfan 1772 . . . . . . . 8  |-  F/ y ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2423nfex 1768 . . . . . . 7  |-  F/ y E. z ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2520, 24nfim 1770 . . . . . 6  |-  F/ y ( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
26 bi1 180 . . . . . . . . . . . . . 14  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  y  =  z ) )
27 ax-14 1689 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  e.  y  ->  x  e.  z )
)
2826, 27syl6 31 . . . . . . . . . . . . 13  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  (
x  e.  y  ->  x  e.  z )
) )
2928com23 74 . . . . . . . . . . . 12  |-  ( ( A F y  <->  y  =  z )  ->  (
x  e.  y  -> 
( A F y  ->  x  e.  z ) ) )
3029imp3a 422 . . . . . . . . . . 11  |-  ( ( A F y  <->  y  =  z )  ->  (
( x  e.  y  /\  A F y )  ->  x  e.  z ) )
3130sps 1740 . . . . . . . . . 10  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  ->  x  e.  z )
)
3231anc2ri 543 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  -> 
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3332com12 29 . . . . . . . 8  |-  ( ( x  e.  y  /\  A F y )  -> 
( A. y ( A F y  <->  y  =  z )  ->  (
x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3433eximdv 1609 . . . . . . 7  |-  ( ( x  e.  y  /\  A F y )  -> 
( E. z A. y ( A F y  <->  y  =  z )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3517, 34syl5bi 210 . . . . . 6  |-  ( ( x  e.  y  /\  A F y )  -> 
( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3625, 35exlimi 1802 . . . . 5  |-  ( E. y ( x  e.  y  /\  A F y )  ->  ( E! y  A F
y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3736imp 420 . . . 4  |-  ( ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
3819, 37impbii 182 . . 3  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  <->  ( E. y
( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
391, 38bitri 242 . 2  |-  ( x  e.  ( F `  A )  <->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
4039abbi2i 2395 1  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528   E.wex 1529    = wceq 1624    e. wcel 1685   E!weu 2144   {cab 2270   class class class wbr 4024   ` cfv 5221
This theorem is referenced by:  tz6.12-1  5504
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fv 5229
  Copyright terms: Public domain W3C validator