MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Unicode version

Theorem fvclss 5843
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  ( ran  F  u.  { (/)
} )
Distinct variable group:    x, y, F

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2360 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
2 tz6.12i 5628 . . . . . . . . . 10  |-  ( y  =/=  (/)  ->  ( ( F `  x )  =  y  ->  x F y ) )
31, 2syl5bi 208 . . . . . . . . 9  |-  ( y  =/=  (/)  ->  ( y  =  ( F `  x )  ->  x F y ) )
43eximdv 1622 . . . . . . . 8  |-  ( y  =/=  (/)  ->  ( E. x  y  =  ( F `  x )  ->  E. x  x F y ) )
5 vex 2867 . . . . . . . . 9  |-  y  e. 
_V
65elrn 4998 . . . . . . . 8  |-  ( y  e.  ran  F  <->  E. x  x F y )
74, 6syl6ibr 218 . . . . . . 7  |-  ( y  =/=  (/)  ->  ( E. x  y  =  ( F `  x )  ->  y  e.  ran  F
) )
87com12 27 . . . . . 6  |-  ( E. x  y  =  ( F `  x )  ->  ( y  =/=  (/)  ->  y  e.  ran  F ) )
98necon1bd 2589 . . . . 5  |-  ( E. x  y  =  ( F `  x )  ->  ( -.  y  e.  ran  F  ->  y  =  (/) ) )
10 elsn 3731 . . . . 5  |-  ( y  e.  { (/) }  <->  y  =  (/) )
119, 10syl6ibr 218 . . . 4  |-  ( E. x  y  =  ( F `  x )  ->  ( -.  y  e.  ran  F  ->  y  e.  { (/) } ) )
1211orrd 367 . . 3  |-  ( E. x  y  =  ( F `  x )  ->  ( y  e. 
ran  F  \/  y  e.  { (/) } ) )
1312ss2abi 3321 . 2  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  { y  |  ( y  e.  ran  F  \/  y  e.  { (/) } ) }
14 df-un 3233 . 2  |-  ( ran 
F  u.  { (/) } )  =  { y  |  ( y  e. 
ran  F  \/  y  e.  { (/) } ) }
1513, 14sseqtr4i 3287 1  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  ( ran  F  u.  { (/)
} )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357   E.wex 1541    = wceq 1642    e. wcel 1710   {cab 2344    =/= wne 2521    u. cun 3226    C_ wss 3228   (/)c0 3531   {csn 3716   class class class wbr 4102   ran crn 4769   ` cfv 5334
This theorem is referenced by:  fvclex  5844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-cnv 4776  df-dm 4778  df-rn 4779  df-iota 5298  df-fv 5342
  Copyright terms: Public domain W3C validator