MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Unicode version

Theorem fvco 5494
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( F  o.  G ) `  A
)  =  ( F `
 ( G `  A ) ) )

Proof of Theorem fvco
StepHypRef Expression
1 funfn 5187 . 2  |-  ( Fun 
G  <->  G  Fn  dom  G )
2 fvco2 5493 . 2  |-  ( ( G  Fn  dom  G  /\  A  e.  dom  G )  ->  ( ( F  o.  G ) `  A )  =  ( F `  ( G `
 A ) ) )
31, 2sylanb 460 1  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( F  o.  G ) `  A
)  =  ( F `
 ( G `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   dom cdm 4626    o. ccom 4630   Fun wfun 4632    Fn wfn 4633   ` cfv 4638
This theorem is referenced by:  fin23lem30  7901  hashkf  11270  hashgval  11271
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-fv 4654
  Copyright terms: Public domain W3C validator