Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveleq Unicode version

Theorem fveleq 24064
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Assertion
Ref Expression
fveleq  |-  ( A  =  B  ->  (
( ph  ->  ( F `
 A )  e.  P )  <->  ( ph  ->  ( F `  B
)  e.  P ) ) )

Proof of Theorem fveleq
StepHypRef Expression
1 fveq2 5377 . . 3  |-  ( A  =  B  ->  ( F `  A )  =  ( F `  B ) )
21eleq1d 2319 . 2  |-  ( A  =  B  ->  (
( F `  A
)  e.  P  <->  ( F `  B )  e.  P
) )
32imbi2d 309 1  |-  ( A  =  B  ->  (
( ph  ->  ( F `
 A )  e.  P )  <->  ( ph  ->  ( F `  B
)  e.  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    = wceq 1619    e. wcel 1621   ` cfv 4592
This theorem is referenced by:  findfvcl  24065
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fv 4608
  Copyright terms: Public domain W3C validator