Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveleq Unicode version

Theorem fveleq 24300
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Assertion
Ref Expression
fveleq  |-  ( A  =  B  ->  (
( ph  ->  ( F `
 A )  e.  P )  <->  ( ph  ->  ( F `  B
)  e.  P ) ) )

Proof of Theorem fveleq
StepHypRef Expression
1 fveq2 5486 . . 3  |-  ( A  =  B  ->  ( F `  A )  =  ( F `  B ) )
21eleq1d 2350 . 2  |-  ( A  =  B  ->  (
( F `  A
)  e.  P  <->  ( F `  B )  e.  P
) )
32imbi2d 307 1  |-  ( A  =  B  ->  (
( ph  ->  ( F `
 A )  e.  P )  <->  ( ph  ->  ( F `  B
)  e.  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1685   ` cfv 5221
This theorem is referenced by:  findfvcl  24301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fv 5229
  Copyright terms: Public domain W3C validator