MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelima Unicode version

Theorem fvelima 5737
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
fvelima  |-  ( ( Fun  F  /\  A  e.  ( F " B
) )  ->  E. x  e.  B  ( F `  x )  =  A )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fvelima
StepHypRef Expression
1 elimag 5166 . . . 4  |-  ( A  e.  ( F " B )  ->  ( A  e.  ( F " B )  <->  E. x  e.  B  x F A ) )
21ibi 233 . . 3  |-  ( A  e.  ( F " B )  ->  E. x  e.  B  x F A )
3 funbrfv 5724 . . . 4  |-  ( Fun 
F  ->  ( x F A  ->  ( F `
 x )  =  A ) )
43reximdv 2777 . . 3  |-  ( Fun 
F  ->  ( E. x  e.  B  x F A  ->  E. x  e.  B  ( F `  x )  =  A ) )
52, 4syl5 30 . 2  |-  ( Fun 
F  ->  ( A  e.  ( F " B
)  ->  E. x  e.  B  ( F `  x )  =  A ) )
65imp 419 1  |-  ( ( Fun  F  /\  A  e.  ( F " B
) )  ->  E. x  e.  B  ( F `  x )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667   class class class wbr 4172   "cima 4840   Fun wfun 5407   ` cfv 5413
This theorem is referenced by:  ssimaex  5747  isofrlem  6019  tz7.49  6661  rankwflemb  7675  tcrank  7764  zorn2lem5  8336  zorn2lem6  8337  uniimadom  8375  wunr1om  8550  tskr1om  8598  tskr1om2  8599  grur1  8651  iscldtop  17114  kqfvima  17715  fmfnfmlem4  17942  fmfnfm  17943  divstgpopn  18102  c1liplem1  19833  plypf1  20084  htthlem  22373  xrofsup  24079  erdszelem7  24836  erdszelem8  24837  axcontlem9  25815  ivthALT  26228  heibor1lem  26408  ismrc  26645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fv 5421
  Copyright terms: Public domain W3C validator