MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2i Unicode version

Theorem fvmpt2i 5623
Description: Value of a function given by the "maps to" notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmpt2i  |-  ( x  e.  A  ->  ( F `  x )  =  (  _I  `  B
) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpt2i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3097 . . 3  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
2 csbid 3101 . . 3  |-  [_ x  /  x ]_ B  =  B
31, 2syl6eq 2344 . 2  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
4 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 nfcv 2432 . . . 4  |-  F/_ y B
6 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
85, 6, 7cbvmpt 4126 . . 3  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
94, 8eqtri 2316 . 2  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
103, 9fvmpti 5617 1  |-  ( x  e.  A  ->  ( F `  x )  =  (  _I  `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   [_csb 3094    e. cmpt 4093    _I cid 4320   ` cfv 5271
This theorem is referenced by:  fvmpt2  5624  sumfc  12198  fsumf1o  12212  sumss  12213  isumshft  12314  mbfsup  19035  itg2splitlem  19119  dgrle  19641  prodfc  24171  fprodf1o  24172  prodeq3ii  25411  prodeqfv  25421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279
  Copyright terms: Public domain W3C validator