MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpti Unicode version

Theorem fvmpti 5791
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1  |-  ( x  =  A  ->  B  =  C )
fvmptg.2  |-  F  =  ( x  e.  D  |->  B )
Assertion
Ref Expression
fvmpti  |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C
) )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4  |-  ( x  =  A  ->  B  =  C )
2 fvmptg.2 . . . 4  |-  F  =  ( x  e.  D  |->  B )
31, 2fvmptg 5790 . . 3  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  C )
4 fvi 5769 . . . 4  |-  ( C  e.  _V  ->  (  _I  `  C )  =  C )
54adantl 453 . . 3  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  (  _I  `  C
)  =  C )
63, 5eqtr4d 2465 . 2  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  (  _I 
`  C ) )
71eleq1d 2496 . . . . . . . 8  |-  ( x  =  A  ->  ( B  e.  _V  <->  C  e.  _V ) )
82dmmpt 5351 . . . . . . . 8  |-  dom  F  =  { x  e.  D  |  B  e.  _V }
97, 8elrab2 3081 . . . . . . 7  |-  ( A  e.  dom  F  <->  ( A  e.  D  /\  C  e. 
_V ) )
109baib 872 . . . . . 6  |-  ( A  e.  D  ->  ( A  e.  dom  F  <->  C  e.  _V ) )
1110notbid 286 . . . . 5  |-  ( A  e.  D  ->  ( -.  A  e.  dom  F  <->  -.  C  e.  _V ) )
12 ndmfv 5741 . . . . 5  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  (/) )
1311, 12syl6bir 221 . . . 4  |-  ( A  e.  D  ->  ( -.  C  e.  _V  ->  ( F `  A
)  =  (/) ) )
1413imp 419 . . 3  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  ( F `  A )  =  (/) )
15 fvprc 5708 . . . 4  |-  ( -.  C  e.  _V  ->  (  _I  `  C )  =  (/) )
1615adantl 453 . . 3  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  (  _I  `  C )  =  (/) )
1714, 16eqtr4d 2465 . 2  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  ( F `  A )  =  (  _I  `  C ) )
186, 17pm2.61dan 767 1  |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2943   (/)c0 3615    e. cmpt 4253    _I cid 4480   dom cdm 4864   ` cfv 5440
This theorem is referenced by:  fvmpt2i  5797  fvmptex  5801  sumeq2ii  12470  summolem3  12491  fsumf1o  12500  isumshft  12602  prodeq2ii  25223  prodmolem3  25243  fprodf1o  25256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fv 5448
  Copyright terms: Public domain W3C validator