MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpti Unicode version

Theorem fvmpti 5521
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1  |-  ( x  =  A  ->  B  =  C )
fvmptg.2  |-  F  =  ( x  e.  D  |->  B )
Assertion
Ref Expression
fvmpti  |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C
) )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4  |-  ( x  =  A  ->  B  =  C )
2 fvmptg.2 . . . 4  |-  F  =  ( x  e.  D  |->  B )
31, 2fvmptg 5520 . . 3  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  C )
4 fvi 5499 . . . 4  |-  ( C  e.  _V  ->  (  _I  `  C )  =  C )
54adantl 454 . . 3  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  (  _I  `  C
)  =  C )
63, 5eqtr4d 2291 . 2  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  (  _I 
`  C ) )
71eleq1d 2322 . . . . . . . 8  |-  ( x  =  A  ->  ( B  e.  _V  <->  C  e.  _V ) )
82dmmpt 5141 . . . . . . . 8  |-  dom  F  =  { x  e.  D  |  B  e.  _V }
97, 8elrab2 2893 . . . . . . 7  |-  ( A  e.  dom  F  <->  ( A  e.  D  /\  C  e. 
_V ) )
109baib 876 . . . . . 6  |-  ( A  e.  D  ->  ( A  e.  dom  F  <->  C  e.  _V ) )
1110notbid 287 . . . . 5  |-  ( A  e.  D  ->  ( -.  A  e.  dom  F  <->  -.  C  e.  _V ) )
12 ndmfv 5472 . . . . 5  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  (/) )
1311, 12syl6bir 222 . . . 4  |-  ( A  e.  D  ->  ( -.  C  e.  _V  ->  ( F `  A
)  =  (/) ) )
1413imp 420 . . 3  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  ( F `  A )  =  (/) )
15 fvprc 5441 . . . 4  |-  ( -.  C  e.  _V  ->  (  _I  `  C )  =  (/) )
1615adantl 454 . . 3  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  (  _I  `  C )  =  (/) )
1714, 16eqtr4d 2291 . 2  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  ( F `  A )  =  (  _I  `  C ) )
186, 17pm2.61dan 769 1  |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2757   (/)c0 3416    e. cmpt 4037    _I cid 4262   dom cdm 4647   ` cfv 4659
This theorem is referenced by:  fvmpt2i  5527  fvmptex  5530  sumeq2ii  12117  summolem3  12138  fsumf1o  12147  isumshft  12246
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fv 4675
  Copyright terms: Public domain W3C validator