MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptt Unicode version

Theorem fvmptt 5617
Description: Closed theorem form of fvmpt 5604. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fvmptt  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptt
StepHypRef Expression
1 simp2 956 . . 3  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  F  =  ( x  e.  D  |->  B ) )
21fveq1d 5529 . 2  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  ( ( x  e.  D  |->  B ) `
 A ) )
3 risset 2592 . . . . 5  |-  ( A  e.  D  <->  E. x  e.  D  x  =  A )
4 elex 2798 . . . . . 6  |-  ( C  e.  V  ->  C  e.  _V )
5 nfa1 1758 . . . . . . 7  |-  F/ x A. x ( x  =  A  ->  B  =  C )
6 nfv 1607 . . . . . . . 8  |-  F/ x  C  e.  _V
7 nfmpt1 4111 . . . . . . . . . 10  |-  F/_ x
( x  e.  D  |->  B )
8 nfcv 2421 . . . . . . . . . 10  |-  F/_ x A
97, 8nffv 5534 . . . . . . . . 9  |-  F/_ x
( ( x  e.  D  |->  B ) `  A )
109nfeq1 2430 . . . . . . . 8  |-  F/ x
( ( x  e.  D  |->  B ) `  A )  =  C
116, 10nfim 1771 . . . . . . 7  |-  F/ x
( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A )  =  C )
12 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  x  e.  D )
13 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  B  =  C )
14 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  C  e.  _V )
1513, 14eqeltrd 2359 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  B  e.  _V )
16 eqid 2285 . . . . . . . . . . . . . 14  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
1716fvmpt2 5610 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  B  e.  _V )  ->  ( ( x  e.  D  |->  B ) `  x )  =  B )
1812, 15, 17syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  x )  =  B )
19 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  x  =  A )
2019fveq2d 5531 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  x )  =  ( ( x  e.  D  |->  B ) `  A
) )
2118, 20, 133eqtr3d 2325 . . . . . . . . . . 11  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  A )  =  C )
2221exp43 595 . . . . . . . . . 10  |-  ( x  =  A  ->  ( B  =  C  ->  ( x  e.  D  -> 
( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A )  =  C ) ) ) )
2322a2i 12 . . . . . . . . 9  |-  ( ( x  =  A  ->  B  =  C )  ->  ( x  =  A  ->  ( x  e.  D  ->  ( C  e.  _V  ->  ( (
x  e.  D  |->  B ) `  A )  =  C ) ) ) )
2423com23 72 . . . . . . . 8  |-  ( ( x  =  A  ->  B  =  C )  ->  ( x  e.  D  ->  ( x  =  A  ->  ( C  e. 
_V  ->  ( ( x  e.  D  |->  B ) `
 A )  =  C ) ) ) )
2524sps 1741 . . . . . . 7  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  (
x  e.  D  -> 
( x  =  A  ->  ( C  e. 
_V  ->  ( ( x  e.  D  |->  B ) `
 A )  =  C ) ) ) )
265, 11, 25rexlimd 2666 . . . . . 6  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( E. x  e.  D  x  =  A  ->  ( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A
)  =  C ) ) )
274, 26syl7 63 . . . . 5  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( E. x  e.  D  x  =  A  ->  ( C  e.  V  -> 
( ( x  e.  D  |->  B ) `  A )  =  C ) ) )
283, 27syl5bi 208 . . . 4  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( A  e.  D  ->  ( C  e.  V  -> 
( ( x  e.  D  |->  B ) `  A )  =  C ) ) )
2928imp32 422 . . 3  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  ( A  e.  D  /\  C  e.  V )
)  ->  ( (
x  e.  D  |->  B ) `  A )  =  C )
30293adant2 974 . 2  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  (
( x  e.  D  |->  B ) `  A
)  =  C )
312, 30eqtrd 2317 1  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1529    = wceq 1625    e. wcel 1686   E.wrex 2546   _Vcvv 2790    e. cmpt 4079   ` cfv 5257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fv 5265
  Copyright terms: Public domain W3C validator