MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3ig Unicode version

Theorem fvopab3ig 5601
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
fvopab3ig.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
fvopab3ig.3  |-  ( x  e.  C  ->  E* y ph )
fvopab3ig.4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }
Assertion
Ref Expression
fvopab3ig  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    D( x, y)    F( x, y)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2345 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
2 fvopab3ig.1 . . . . . . . 8  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
31, 2anbi12d 691 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  C  /\  ph )  <->  ( A  e.  C  /\  ps )
) )
4 fvopab3ig.2 . . . . . . . 8  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
54anbi2d 684 . . . . . . 7  |-  ( y  =  B  ->  (
( A  e.  C  /\  ps )  <->  ( A  e.  C  /\  ch )
) )
63, 5opelopabg 4285 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }  <->  ( A  e.  C  /\  ch )
) )
76biimpar 471 . . . . 5  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  ( A  e.  C  /\  ch )
)  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } )
87exp43 595 . . . 4  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( A  e.  C  -> 
( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) ) ) )
98pm2.43a 45 . . 3  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) ) )
109imp 418 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) )
11 fvopab3ig.4 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }
1211fveq1i 5528 . . 3  |-  ( F `
 A )  =  ( { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } `  A
)
13 funopab 5289 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) } 
<-> 
A. x E* y
( x  e.  C  /\  ph ) )
14 fvopab3ig.3 . . . . . 6  |-  ( x  e.  C  ->  E* y ph )
15 moanimv 2203 . . . . . 6  |-  ( E* y ( x  e.  C  /\  ph )  <->  ( x  e.  C  ->  E* y ph ) )
1614, 15mpbir 200 . . . . 5  |-  E* y
( x  e.  C  /\  ph )
1713, 16mpgbir 1539 . . . 4  |-  Fun  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }
18 funopfv 5564 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }  ->  ( { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) } `  A )  =  B ) )
1917, 18ax-mp 8 . . 3  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } `  A
)  =  B )
2012, 19syl5eq 2329 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( F `  A )  =  B )
2110, 20syl6 29 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   E*wmo 2146   <.cop 3645   {copab 4078   Fun wfun 5251   ` cfv 5257
This theorem is referenced by:  fvmptg  5602  fvopab6  5623  ov6g  5987
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-iota 5221  df-fun 5259  df-fv 5265
  Copyright terms: Public domain W3C validator