MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq Unicode version

Theorem fvreseq 5548
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fvreseq  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Distinct variable groups:    x, B    x, F    x, G
Allowed substitution hint:    A( x)

Proof of Theorem fvreseq
StepHypRef Expression
1 fnssres 5281 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
2 fnssres 5281 . . . 4  |-  ( ( G  Fn  A  /\  B  C_  A )  -> 
( G  |`  B )  Fn  B )
31, 2anim12i 551 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  ( G  Fn  A  /\  B  C_  A
) )  ->  (
( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B ) )
43anandirs 807 . 2  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B
) )
5 eqfnfv 5542 . . 3  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( ( F  |`  B ) `  x )  =  ( ( G  |`  B ) `
 x ) ) )
6 fvres 5461 . . . . 5  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
7 fvres 5461 . . . . 5  |-  ( x  e.  B  ->  (
( G  |`  B ) `
 x )  =  ( G `  x
) )
86, 7eqeq12d 2270 . . . 4  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  =  ( ( G  |`  B ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
98ralbiia 2548 . . 3  |-  ( A. x  e.  B  (
( F  |`  B ) `
 x )  =  ( ( G  |`  B ) `  x
)  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) )
105, 9syl6bb 254 . 2  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
114, 10syl 17 1  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516    C_ wss 3113    |` cres 4649    Fn wfn 4654   ` cfv 4659
This theorem is referenced by:  tfrlem1  6345  tfr3  6369  fseqenlem1  7605  dchrresb  20446  rdgprc  23506  predreseq  23534  wfr3g  23610  frr3g  23635  bnj1536  27919  bnj1253  28080  bnj1280  28083
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-fv 4675
  Copyright terms: Public domain W3C validator