Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsb Unicode version

Theorem fvsb 27522
Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Assertion
Ref Expression
fvsb  |-  ( E! y  A F y  ->  ( [. ( F `  A )  /  x ]. ph  <->  E. x
( A. y ( A F y  <->  y  =  x )  /\  ph ) ) )
Distinct variable groups:    x, A, y    x, F, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem fvsb
StepHypRef Expression
1 df-fv 5421 . . 3  |-  ( F `
 A )  =  ( iota y A F y )
2 dfsbcq 3123 . . 3  |-  ( ( F `  A )  =  ( iota y A F y )  -> 
( [. ( F `  A )  /  x ]. ph  <->  [. ( iota y A F y )  /  x ]. ph ) )
31, 2ax-mp 8 . 2  |-  ( [. ( F `  A )  /  x ]. ph  <->  [. ( iota y A F y )  /  x ]. ph )
4 iotasbc 27487 . 2  |-  ( E! y  A F y  ->  ( [. ( iota y A F y )  /  x ]. ph  <->  E. x ( A. y
( A F y  <-> 
y  =  x )  /\  ph ) ) )
53, 4syl5bb 249 1  |-  ( E! y  A F y  ->  ( [. ( F `  A )  /  x ]. ph  <->  E. x
( A. y ( A F y  <->  y  =  x )  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649   E!weu 2254   [.wsbc 3121   class class class wbr 4172   iotacio 5375   ` cfv 5413
This theorem is referenced by:  fveqsb  27523
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rex 2672  df-v 2918  df-sbc 3122  df-un 3285  df-sn 3780  df-pr 3781  df-uni 3976  df-iota 5377  df-fv 5421
  Copyright terms: Public domain W3C validator