MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzrevral Unicode version

Theorem fzrevral 11086
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Distinct variable groups:    j, k, K    j, M, k    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 448 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
2 elfzelz 11015 . . . . . . . . 9  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
3 fzrev 11064 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
43anassrs 630 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
52, 4sylan2 461 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
61, 5mpbid 202 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ( M ... N
) )
7 rspsbc 3199 . . . . . . 7  |-  ( ( K  -  k )  e.  ( M ... N )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
86, 7syl 16 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
98ex 424 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( k  e.  ( ( K  -  N ) ... ( K  -  M )
)  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1093impa 1148 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  -> 
( A. j  e.  ( M ... N
) ph  ->  [. ( K  -  k )  /  j ]. ph )
) )
1110com23 74 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  ( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1211ralrimdv 2755 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
13 nfv 1626 . . . 4  |-  F/ j  K  e.  ZZ
14 nfcv 2540 . . . . 5  |-  F/_ j
( ( K  -  N ) ... ( K  -  M )
)
15 nfsbc1v 3140 . . . . 5  |-  F/ j
[. ( K  -  k )  /  j ]. ph
1614, 15nfral 2719 . . . 4  |-  F/ j A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph
17 fzrev2i 11066 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  j
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
18 oveq2 6048 . . . . . . . . . 10  |-  ( k  =  ( K  -  j )  ->  ( K  -  k )  =  ( K  -  ( K  -  j
) ) )
19 dfsbcq 3123 . . . . . . . . . 10  |-  ( ( K  -  k )  =  ( K  -  ( K  -  j
) )  ->  ( [. ( K  -  k
)  /  j ]. ph  <->  [. ( K  -  ( K  -  j )
)  /  j ]. ph ) )
2018, 19syl 16 . . . . . . . . 9  |-  ( k  =  ( K  -  j )  ->  ( [. ( K  -  k
)  /  j ]. ph  <->  [. ( K  -  ( K  -  j )
)  /  j ]. ph ) )
2120rspcv 3008 . . . . . . . 8  |-  ( ( K  -  j )  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
2217, 21syl 16 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  [. ( K  -  ( K  -  j ) )  / 
j ]. ph ) )
23 zcn 10243 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
24 elfzelz 11015 . . . . . . . . . . 11  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
2524zcnd 10332 . . . . . . . . . 10  |-  ( j  e.  ( M ... N )  ->  j  e.  CC )
26 nncan 9286 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  j  e.  CC )  ->  ( K  -  ( K  -  j )
)  =  j )
2723, 25, 26syl2an 464 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  ( K  -  j )
)  =  j )
2827eqcomd 2409 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
j  =  ( K  -  ( K  -  j ) ) )
29 sbceq1a 3131 . . . . . . . 8  |-  ( j  =  ( K  -  ( K  -  j
) )  ->  ( ph 
<-> 
[. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
3028, 29syl 16 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( ph  <->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
3122, 30sylibrd 226 . . . . . 6  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) )
3231ex 424 . . . . 5  |-  ( K  e.  ZZ  ->  (
j  e.  ( M ... N )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) ) )
3332com23 74 . . . 4  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  ( j  e.  ( M ... N )  ->  ph ) ) )
3413, 16, 33ralrimd 2754 . . 3  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
35343ad2ant3 980 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
3612, 35impbid 184 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   [.wsbc 3121  (class class class)co 6040   CCcc 8944    - cmin 9247   ZZcz 10238   ...cfz 10999
This theorem is referenced by:  fzrevral2  11087  fzrevral3  11088  fzshftral  11089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000
  Copyright terms: Public domain W3C validator