MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval Unicode version

Theorem fzval 10715
Description: The value of a finite set of sequential integers. E.g.,  2 ... 5 means the set  { 2 ,  3 ,  4 ,  5 }. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where  NN_k means our  1 ... k; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Distinct variable groups:    k, M    k, N

Proof of Theorem fzval
StepHypRef Expression
1 breq1 3966 . . . 4  |-  ( m  =  M  ->  (
m  <_  k  <->  M  <_  k ) )
21anbi1d 688 . . 3  |-  ( m  =  M  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  n ) ) )
32rabbidv 2732 . 2  |-  ( m  =  M  ->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) } )
4 breq2 3967 . . . 4  |-  ( n  =  N  ->  (
k  <_  n  <->  k  <_  N ) )
54anbi2d 687 . . 3  |-  ( n  =  N  ->  (
( M  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  N ) ) )
65rabbidv 2732 . 2  |-  ( n  =  N  ->  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
7 df-fz 10714 . 2  |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_ 
k  /\  k  <_  n ) } )
8 zex 9965 . . 3  |-  ZZ  e.  _V
98rabex 4105 . 2  |-  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) }  e.  _V
103, 6, 7, 9ovmpt2 5882 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2519   class class class wbr 3963  (class class class)co 5757    <_ cle 8801   ZZcz 9956   ...cfz 10713
This theorem is referenced by:  fzval2  10716  elfz1  10718
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-cnex 8726  ax-resscn 8727
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-neg 8973  df-z 9957  df-fz 10714
  Copyright terms: Public domain W3C validator