MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval Unicode version

Theorem fzval 10937
Description: The value of a finite set of sequential integers. E.g.,  2 ... 5 means the set  { 2 ,  3 ,  4 ,  5 }. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where  NN_k means our  1 ... k; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Distinct variable groups:    k, M    k, N

Proof of Theorem fzval
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4128 . . . 4  |-  ( m  =  M  ->  (
m  <_  k  <->  M  <_  k ) )
21anbi1d 685 . . 3  |-  ( m  =  M  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  n ) ) )
32rabbidv 2865 . 2  |-  ( m  =  M  ->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) } )
4 breq2 4129 . . . 4  |-  ( n  =  N  ->  (
k  <_  n  <->  k  <_  N ) )
54anbi2d 684 . . 3  |-  ( n  =  N  ->  (
( M  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  N ) ) )
65rabbidv 2865 . 2  |-  ( n  =  N  ->  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
7 df-fz 10936 . 2  |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_ 
k  /\  k  <_  n ) } )
8 zex 10184 . . 3  |-  ZZ  e.  _V
98rabex 4267 . 2  |-  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) }  e.  _V
103, 6, 7, 9ovmpt2 6109 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   {crab 2632   class class class wbr 4125  (class class class)co 5981    <_ cle 9015   ZZcz 10175   ...cfz 10935
This theorem is referenced by:  fzval2  10938  elfz1  10940
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316  ax-cnex 8940  ax-resscn 8941
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-neg 9187  df-z 10176  df-fz 10936
  Copyright terms: Public domain W3C validator