MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch-kn Unicode version

Theorem gch-kn 8236
Description: The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets," available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 8136 to the successor aleph using enen2 6935. (Contributed by NM, 1-Oct-2004.)
Assertion
Ref Expression
gch-kn  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A
) ) }  <->  ( aleph ` 
suc  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) ) )
Distinct variable group:    x, A

Proof of Theorem gch-kn
StepHypRef Expression
1 alephexp2 8136 . . 3  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~~  {
x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
2 enen2 6935 . . 3  |-  ( ( 2o  ^m  ( aleph `  A ) )  ~~  { x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) }  ->  (
( aleph `  suc  A ) 
~~  ( 2o  ^m  ( aleph `  A )
)  <->  ( aleph `  suc  A )  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } ) )
31, 2syl 17 . 2  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
~~  ( 2o  ^m  ( aleph `  A )
)  <->  ( aleph `  suc  A )  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } ) )
43bicomd 194 1  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A
) ) }  <->  ( aleph ` 
suc  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   {cab 2242    C_ wss 3094   class class class wbr 3963   Oncon0 4329   suc csuc 4331   ` cfv 4638  (class class class)co 5757   2oc2o 6406    ^m cmap 6705    ~~ cen 6793   alephcale 7502
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-ac2 8022
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-oi 7158  df-har 7205  df-card 7505  df-aleph 7506  df-acn 7508  df-ac 7676
  Copyright terms: Public domain W3C validator