MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch-kn Unicode version

Theorem gch-kn 8305
Description: The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets," available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 8205 to the successor aleph using enen2 7004. (Contributed by NM, 1-Oct-2004.)
Assertion
Ref Expression
gch-kn  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A
) ) }  <->  ( aleph ` 
suc  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) ) )
Distinct variable group:    x, A

Proof of Theorem gch-kn
StepHypRef Expression
1 alephexp2 8205 . . 3  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~~  {
x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
2 enen2 7004 . . 3  |-  ( ( 2o  ^m  ( aleph `  A ) )  ~~  { x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) }  ->  (
( aleph `  suc  A ) 
~~  ( 2o  ^m  ( aleph `  A )
)  <->  ( aleph `  suc  A )  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } ) )
31, 2syl 15 . 2  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
~~  ( 2o  ^m  ( aleph `  A )
)  <->  ( aleph `  suc  A )  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } ) )
43bicomd 192 1  |-  ( A  e.  On  ->  (
( aleph `  suc  A ) 
~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A
) ) }  <->  ( aleph ` 
suc  A )  ~~  ( 2o  ^m  ( aleph `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1686   {cab 2271    C_ wss 3154   class class class wbr 4025   Oncon0 4394   suc csuc 4396   ` cfv 5257  (class class class)co 5860   2oc2o 6475    ^m cmap 6774    ~~ cen 6862   alephcale 7571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-ac2 8091
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-oi 7227  df-har 7274  df-card 7574  df-aleph 7575  df-acn 7577  df-ac 7745
  Copyright terms: Public domain W3C validator