MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch3 Unicode version

Theorem gch3 8544
Description: An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gch3  |-  (GCH  =  _V 
<-> 
A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )

Proof of Theorem gch3
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  x  e.  On )
2 fvex 5733 . . . . 5  |-  ( aleph `  x )  e.  _V
3 simpl 444 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  On )  -> GCH  =  _V )
42, 3syl5eleqr 2522 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  ( aleph `  x )  e. GCH )
5 fvex 5733 . . . . 5  |-  ( aleph ` 
suc  x )  e. 
_V
65, 3syl5eleqr 2522 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  ( aleph `  suc  x )  e. GCH )
7 gchaleph2 8540 . . . 4  |-  ( ( x  e.  On  /\  ( aleph `  x )  e. GCH  /\  ( aleph `  suc  x )  e. GCH )  ->  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
81, 4, 6, 7syl3anc 1184 . . 3  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
98ralrimiva 2781 . 2  |-  (GCH  =  _V  ->  A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
10 alephgch 8542 . . . . . 6  |-  ( (
aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  ( aleph `  x )  e. GCH )
1110ralimi 2773 . . . . 5  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  A. x  e.  On  ( aleph `  x
)  e. GCH )
12 alephfnon 7935 . . . . . 6  |-  aleph  Fn  On
13 ffnfv 5885 . . . . . 6  |-  ( aleph : On -->GCH 
<->  ( aleph  Fn  On  /\  A. x  e.  On  ( aleph `  x )  e. GCH ) )
1412, 13mpbiran 885 . . . . 5  |-  ( aleph : On -->GCH 
<-> 
A. x  e.  On  ( aleph `  x )  e. GCH )
1511, 14sylibr 204 . . . 4  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  aleph : On -->GCH )
16 df-f 5449 . . . . 5  |-  ( aleph : On -->GCH 
<->  ( aleph  Fn  On  /\  ran  aleph  C_ GCH ) )
1712, 16mpbiran 885 . . . 4  |-  ( aleph : On -->GCH 
<->  ran  aleph  C_ GCH )
1815, 17sylib 189 . . 3  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  ran  aleph  C_ GCH )
19 gch2 8543 . . 3  |-  (GCH  =  _V 
<->  ran  aleph  C_ GCH )
2018, 19sylibr 204 . 2  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  -> GCH  =  _V )
219, 20impbii 181 1  |-  (GCH  =  _V 
<-> 
A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    C_ wss 3312   ~Pcpw 3791   class class class wbr 4204   Oncon0 4573   suc csuc 4575   ran crn 4870    Fn wfn 5440   -->wf 5441   ` cfv 5445    ~~ cen 7097   alephcale 7812  GCHcgch 8484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-reg 7549  ax-inf2 7585
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-seqom 6696  df-1o 6715  df-2o 6716  df-oadd 6719  df-omul 6720  df-oexp 6721  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-oi 7468  df-har 7515  df-wdom 7516  df-cnf 7606  df-r1 7679  df-rank 7680  df-card 7815  df-aleph 7816  df-ac 7986  df-cda 8037  df-fin4 8156  df-gch 8485
  Copyright terms: Public domain W3C validator