MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchacg Unicode version

Theorem gchacg 8289
Description: A "local" form of gchac 8290. If  A and  ~P A are GCH-sets, then  ~P A is well-orderable. The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchacg  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  e.  dom  card )

Proof of Theorem gchacg
StepHypRef Expression
1 harcl 7270 . 2  |-  (har `  A )  e.  On
2 gchhar 8288 . 2  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~~  ~P A
)
3 isnumi 7574 . 2  |-  ( ( (har `  A )  e.  On  /\  (har `  A )  ~~  ~P A )  ->  ~P A  e.  dom  card )
41, 2, 3sylancr 647 1  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  e.  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    e. wcel 1688   ~Pcpw 3626   class class class wbr 4024   Oncon0 4391   omcom 4655   dom cdm 4688   ` cfv 5221    ~~ cen 6855    ~<_ cdom 6856  harchar 7265   cardccrd 7563  GCHcgch 8237
This theorem is referenced by:  gchac  8290
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-seqom 6455  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-oexp 6480  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-oi 7220  df-har 7267  df-wdom 7268  df-cnf 7358  df-card 7567  df-cda 7789  df-fin4 7908  df-gch 8238
  Copyright terms: Public domain W3C validator