MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaclem Structured version   Unicode version

Theorem gchaclem 8558
Description: Lemma for gchac 8561 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
gchaclem.1  |-  ( ph  ->  om  ~<_  A )
gchaclem.3  |-  ( ph  ->  ~P C  e. GCH )
gchaclem.4  |-  ( ph  ->  ( A  ~<_  C  /\  ( B  ~<_  ~P C  ->  ~P A  ~<_  B ) ) )
Assertion
Ref Expression
gchaclem  |-  ( ph  ->  ( A  ~<_  ~P C  /\  ( B  ~<_  ~P ~P C  ->  ~P A  ~<_  B ) ) )

Proof of Theorem gchaclem
StepHypRef Expression
1 gchaclem.4 . . . 4  |-  ( ph  ->  ( A  ~<_  C  /\  ( B  ~<_  ~P C  ->  ~P A  ~<_  B ) ) )
21simpld 447 . . 3  |-  ( ph  ->  A  ~<_  C )
3 reldom 7118 . . . . . 6  |-  Rel  ~<_
43brrelex2i 4922 . . . . 5  |-  ( A  ~<_  C  ->  C  e.  _V )
52, 4syl 16 . . . 4  |-  ( ph  ->  C  e.  _V )
6 canth2g 7264 . . . 4  |-  ( C  e.  _V  ->  C  ~<  ~P C )
7 sdomdom 7138 . . . 4  |-  ( C 
~<  ~P C  ->  C  ~<_  ~P C )
85, 6, 73syl 19 . . 3  |-  ( ph  ->  C  ~<_  ~P C )
9 domtr 7163 . . 3  |-  ( ( A  ~<_  C  /\  C  ~<_  ~P C )  ->  A  ~<_  ~P C )
102, 8, 9syl2anc 644 . 2  |-  ( ph  ->  A  ~<_  ~P C )
11 gchaclem.3 . . . . . 6  |-  ( ph  ->  ~P C  e. GCH )
1211adantr 453 . . . . 5  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  ~P C  e. GCH )
13 gchaclem.1 . . . . . . . 8  |-  ( ph  ->  om  ~<_  A )
14 domtr 7163 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  ~<_  C )  ->  om  ~<_  C )
1513, 2, 14syl2anc 644 . . . . . . 7  |-  ( ph  ->  om  ~<_  C )
1615adantr 453 . . . . . 6  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  om  ~<_  C )
17 pwcdaidm 8080 . . . . . 6  |-  ( om  ~<_  C  ->  ( ~P C  +c  ~P C ) 
~~  ~P C )
1816, 17syl 16 . . . . 5  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  ( ~P C  +c  ~P C
)  ~~  ~P C
)
19 simpr 449 . . . . 5  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  B  ~<_  ~P ~P C )
20 gchdomtri 8509 . . . . 5  |-  ( ( ~P C  e. GCH  /\  ( ~P C  +c  ~P C )  ~~  ~P C  /\  B  ~<_  ~P ~P C )  ->  ( ~P C  ~<_  B  \/  B  ~<_  ~P C ) )
2112, 18, 19, 20syl3anc 1185 . . . 4  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  ( ~P C  ~<_  B  \/  B  ~<_  ~P C ) )
2221ex 425 . . 3  |-  ( ph  ->  ( B  ~<_  ~P ~P C  ->  ( ~P C  ~<_  B  \/  B  ~<_  ~P C
) ) )
23 pwdom 7262 . . . . 5  |-  ( A  ~<_  C  ->  ~P A  ~<_  ~P C )
24 domtr 7163 . . . . . 6  |-  ( ( ~P A  ~<_  ~P C  /\  ~P C  ~<_  B )  ->  ~P A  ~<_  B )
2524ex 425 . . . . 5  |-  ( ~P A  ~<_  ~P C  ->  ( ~P C  ~<_  B  ->  ~P A  ~<_  B ) )
262, 23, 253syl 19 . . . 4  |-  ( ph  ->  ( ~P C  ~<_  B  ->  ~P A  ~<_  B ) )
271simprd 451 . . . 4  |-  ( ph  ->  ( B  ~<_  ~P C  ->  ~P A  ~<_  B ) )
2826, 27jaod 371 . . 3  |-  ( ph  ->  ( ( ~P C  ~<_  B  \/  B  ~<_  ~P C
)  ->  ~P A  ~<_  B ) )
2922, 28syld 43 . 2  |-  ( ph  ->  ( B  ~<_  ~P ~P C  ->  ~P A  ~<_  B ) )
3010, 29jca 520 1  |-  ( ph  ->  ( A  ~<_  ~P C  /\  ( B  ~<_  ~P ~P C  ->  ~P A  ~<_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    e. wcel 1726   _Vcvv 2958   ~Pcpw 3801   class class class wbr 4215   omcom 4848  (class class class)co 6084    ~~ cen 7109    ~<_ cdom 7110    ~< csdm 7111    +c ccda 8052  GCHcgch 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-1o 6727  df-2o 6728  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-wdom 7530  df-card 7831  df-cda 8053  df-gch 8501
  Copyright terms: Public domain W3C validator