MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchcdaidm Unicode version

Theorem gchcdaidm 8380
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchcdaidm  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )

Proof of Theorem gchcdaidm
StepHypRef Expression
1 simpl 443 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  e. GCH )
2 cdadom3 7904 . . . . 5  |-  ( ( A  e. GCH  /\  A  e. GCH )  ->  A  ~<_  ( A  +c  A ) )
31, 1, 2syl2anc 642 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ( A  +c  A ) )
4 canth2g 7103 . . . . . . . . 9  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
54adantr 451 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<  ~P A
)
6 sdomdom 6977 . . . . . . . 8  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
75, 6syl 15 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ~P A )
8 cdadom1 7902 . . . . . . . 8  |-  ( A  ~<_  ~P A  ->  ( A  +c  A )  ~<_  ( ~P A  +c  A
) )
9 cdadom2 7903 . . . . . . . 8  |-  ( A  ~<_  ~P A  ->  ( ~P A  +c  A
)  ~<_  ( ~P A  +c  ~P A ) )
10 domtr 7002 . . . . . . . 8  |-  ( ( ( A  +c  A
)  ~<_  ( ~P A  +c  A )  /\  ( ~P A  +c  A
)  ~<_  ( ~P A  +c  ~P A ) )  ->  ( A  +c  A )  ~<_  ( ~P A  +c  ~P A
) )
118, 9, 10syl2anc 642 . . . . . . 7  |-  ( A  ~<_  ~P A  ->  ( A  +c  A )  ~<_  ( ~P A  +c  ~P A ) )
127, 11syl 15 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~<_  ( ~P A  +c  ~P A ) )
13 pwcda1 7910 . . . . . . . 8  |-  ( A  e. GCH  ->  ( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o ) )
1413adantr 451 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o ) )
15 gchcda1 8368 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  1o )  ~~  A )
16 pwen 7122 . . . . . . . 8  |-  ( ( A  +c  1o ) 
~~  A  ->  ~P ( A  +c  1o )  ~~  ~P A )
1715, 16syl 15 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  1o )  ~~  ~P A
)
18 entr 7001 . . . . . . 7  |-  ( ( ( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o )  /\  ~P ( A  +c  1o )  ~~  ~P A )  ->  ( ~P A  +c  ~P A
)  ~~  ~P A
)
1914, 17, 18syl2anc 642 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  +c  ~P A )  ~~  ~P A )
20 domentr 7008 . . . . . 6  |-  ( ( ( A  +c  A
)  ~<_  ( ~P A  +c  ~P A )  /\  ( ~P A  +c  ~P A )  ~~  ~P A )  ->  ( A  +c  A )  ~<_  ~P A )
2112, 19, 20syl2anc 642 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~<_  ~P A )
22 gchinf 8369 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  om  ~<_  A )
23 pwcdandom 8379 . . . . . . 7  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  A
) )
2422, 23syl 15 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ~P A  ~<_  ( A  +c  A ) )
25 ensym 6998 . . . . . . 7  |-  ( ( A  +c  A ) 
~~  ~P A  ->  ~P A  ~~  ( A  +c  A ) )
26 endom 6976 . . . . . . 7  |-  ( ~P A  ~~  ( A  +c  A )  ->  ~P A  ~<_  ( A  +c  A ) )
2725, 26syl 15 . . . . . 6  |-  ( ( A  +c  A ) 
~~  ~P A  ->  ~P A  ~<_  ( A  +c  A ) )
2824, 27nsyl 113 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ( A  +c  A )  ~~  ~P A )
29 brsdom 6972 . . . . 5  |-  ( ( A  +c  A ) 
~<  ~P A  <->  ( ( A  +c  A )  ~<_  ~P A  /\  -.  ( A  +c  A )  ~~  ~P A ) )
3021, 28, 29sylanbrc 645 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~<  ~P A )
313, 30jca 518 . . 3  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  ~<_  ( A  +c  A )  /\  ( A  +c  A
)  ~<  ~P A ) )
32 gchen1 8337 . . 3  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  ( A  +c  A )  /\  ( A  +c  A )  ~<  ~P A
) )  ->  A  ~~  ( A  +c  A
) )
3331, 32mpdan 649 . 2  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  +c  A ) )
34 ensym 6998 . 2  |-  ( A 
~~  ( A  +c  A )  ->  ( A  +c  A )  ~~  A )
3533, 34syl 15 1  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    e. wcel 1710   ~Pcpw 3701   class class class wbr 4104   omcom 4738  (class class class)co 5945   1oc1o 6559    ~~ cen 6948    ~<_ cdom 6949    ~< csdm 6950   Fincfn 6951    +c ccda 7883  GCHcgch 8332
This theorem is referenced by:  gchxpidm  8381  gchhar  8383  gchpwdom  8386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-fal 1320  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-seqom 6547  df-1o 6566  df-2o 6567  df-oadd 6570  df-omul 6571  df-oexp 6572  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-oi 7315  df-har 7362  df-cnf 7453  df-card 7662  df-cda 7884  df-fin4 8003  df-gch 8333
  Copyright terms: Public domain W3C validator