MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchcdaidm Unicode version

Theorem gchcdaidm 8287
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchcdaidm  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )

Proof of Theorem gchcdaidm
StepHypRef Expression
1 simpl 445 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  e. GCH )
2 cdadom3 7811 . . . . 5  |-  ( ( A  e. GCH  /\  A  e. GCH )  ->  A  ~<_  ( A  +c  A ) )
31, 1, 2syl2anc 644 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ( A  +c  A ) )
4 canth2g 7012 . . . . . . . . 9  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
54adantr 453 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<  ~P A
)
6 sdomdom 6886 . . . . . . . 8  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
75, 6syl 17 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ~P A )
8 cdadom1 7809 . . . . . . . 8  |-  ( A  ~<_  ~P A  ->  ( A  +c  A )  ~<_  ( ~P A  +c  A
) )
9 cdadom2 7810 . . . . . . . 8  |-  ( A  ~<_  ~P A  ->  ( ~P A  +c  A
)  ~<_  ( ~P A  +c  ~P A ) )
10 domtr 6911 . . . . . . . 8  |-  ( ( ( A  +c  A
)  ~<_  ( ~P A  +c  A )  /\  ( ~P A  +c  A
)  ~<_  ( ~P A  +c  ~P A ) )  ->  ( A  +c  A )  ~<_  ( ~P A  +c  ~P A
) )
118, 9, 10syl2anc 644 . . . . . . 7  |-  ( A  ~<_  ~P A  ->  ( A  +c  A )  ~<_  ( ~P A  +c  ~P A ) )
127, 11syl 17 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~<_  ( ~P A  +c  ~P A ) )
13 pwcda1 7817 . . . . . . . 8  |-  ( A  e. GCH  ->  ( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o ) )
1413adantr 453 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o ) )
15 gchcda1 8275 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  1o )  ~~  A )
16 pwen 7031 . . . . . . . 8  |-  ( ( A  +c  1o ) 
~~  A  ->  ~P ( A  +c  1o )  ~~  ~P A )
1715, 16syl 17 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  1o )  ~~  ~P A
)
18 entr 6910 . . . . . . 7  |-  ( ( ( ~P A  +c  ~P A )  ~~  ~P ( A  +c  1o )  /\  ~P ( A  +c  1o )  ~~  ~P A )  ->  ( ~P A  +c  ~P A
)  ~~  ~P A
)
1914, 17, 18syl2anc 644 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  +c  ~P A )  ~~  ~P A )
20 domentr 6917 . . . . . 6  |-  ( ( ( A  +c  A
)  ~<_  ( ~P A  +c  ~P A )  /\  ( ~P A  +c  ~P A )  ~~  ~P A )  ->  ( A  +c  A )  ~<_  ~P A )
2112, 19, 20syl2anc 644 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~<_  ~P A )
22 gchinf 8276 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  om  ~<_  A )
23 pwcdandom 8286 . . . . . . 7  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  A
) )
2422, 23syl 17 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ~P A  ~<_  ( A  +c  A ) )
25 ensym 6907 . . . . . . 7  |-  ( ( A  +c  A ) 
~~  ~P A  ->  ~P A  ~~  ( A  +c  A ) )
26 endom 6885 . . . . . . 7  |-  ( ~P A  ~~  ( A  +c  A )  ->  ~P A  ~<_  ( A  +c  A ) )
2725, 26syl 17 . . . . . 6  |-  ( ( A  +c  A ) 
~~  ~P A  ->  ~P A  ~<_  ( A  +c  A ) )
2824, 27nsyl 115 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ( A  +c  A )  ~~  ~P A )
29 brsdom 6881 . . . . 5  |-  ( ( A  +c  A ) 
~<  ~P A  <->  ( ( A  +c  A )  ~<_  ~P A  /\  -.  ( A  +c  A )  ~~  ~P A ) )
3021, 28, 29sylanbrc 647 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~<  ~P A )
313, 30jca 520 . . 3  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  ~<_  ( A  +c  A )  /\  ( A  +c  A
)  ~<  ~P A ) )
32 gchen1 8244 . . 3  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  ( A  +c  A )  /\  ( A  +c  A )  ~<  ~P A
) )  ->  A  ~~  ( A  +c  A
) )
3331, 32mpdan 651 . 2  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  +c  A ) )
34 ensym 6907 . 2  |-  ( A 
~~  ( A  +c  A )  ->  ( A  +c  A )  ~~  A )
3533, 34syl 17 1  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    e. wcel 1687   ~Pcpw 3628   class class class wbr 4026   omcom 4657  (class class class)co 5821   1oc1o 6469    ~~ cen 6857    ~<_ cdom 6858    ~< csdm 6859   Fincfn 6860    +c ccda 7790  GCHcgch 8239
This theorem is referenced by:  gchxpidm  8288  gchhar  8290  gchpwdom  8293
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-fal 1313  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-se 4354  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-isom 5232  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-seqom 6457  df-1o 6476  df-2o 6477  df-oadd 6480  df-omul 6481  df-oexp 6482  df-er 6657  df-map 6771  df-en 6861  df-dom 6862  df-sdom 6863  df-fin 6864  df-oi 7222  df-har 7269  df-cnf 7360  df-card 7569  df-cda 7791  df-fin4 7910  df-gch 8240
  Copyright terms: Public domain W3C validator