MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Unicode version

Theorem gchina 8289
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina  |-  (GCH  =  _V  ->  Inacc W  =  Inacc )

Proof of Theorem gchina
StepHypRef Expression
1 simpr 449 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  ->  x  e.  Inacc W )
2 idd 23 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( x  =/=  (/)  ->  x  =/=  (/) ) )
3 idd 23 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( ( cf `  x
)  =  x  -> 
( cf `  x
)  =  x ) )
4 simpllr 738 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  x  e.  Inacc W )
5 pwfi 7119 . . . . . . . . . . . . 13  |-  ( y  e.  Fin  <->  ~P y  e.  Fin )
6 isfinite 7321 . . . . . . . . . . . . . 14  |-  ( ~P y  e.  Fin  <->  ~P y  ~<  om )
7 winainf 8284 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  om  C_  x
)
8 ssdomg 6875 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  ( om  C_  x  ->  om  ~<_  x ) )
97, 8mpd 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  Inacc W  ->  om  ~<_  x )
10 sdomdomtr 6962 . . . . . . . . . . . . . . . 16  |-  ( ( ~P y  ~<  om  /\  om  ~<_  x )  ->  ~P y  ~<  x )
1110expcom 426 . . . . . . . . . . . . . . 15  |-  ( om  ~<_  x  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x ) )
129, 11syl 17 . . . . . . . . . . . . . 14  |-  ( x  e.  Inacc W  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x )
)
136, 12syl5bi 210 . . . . . . . . . . . . 13  |-  ( x  e.  Inacc W  ->  ( ~P y  e.  Fin  ->  ~P y  ~<  x
) )
145, 13syl5bi 210 . . . . . . . . . . . 12  |-  ( x  e.  Inacc W  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
154, 14syl 17 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
1615a1dd 44 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x )
) )
17 vex 2766 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
18 simplll 737 . . . . . . . . . . . . . . 15  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> GCH  =  _V )
1917, 18syl5eleqr 2345 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
y  e. GCH )
20 simprr 736 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  -.  y  e.  Fin )
21 gchinf 8247 . . . . . . . . . . . . . 14  |-  ( ( y  e. GCH  /\  -.  y  e.  Fin )  ->  om  ~<_  y )
2219, 20, 21syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  om 
~<_  y )
23 vex 2766 . . . . . . . . . . . . . 14  |-  z  e. 
_V
2423, 18syl5eleqr 2345 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
z  e. GCH )
25 gchpwdom 8264 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  y  /\  y  e. GCH  /\  z  e. GCH )  ->  ( y  ~<  z  <->  ~P y  ~<_  z ) )
2622, 19, 24, 25syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  <->  ~P y  ~<_  z ) )
27 winacard 8282 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Inacc W  ->  ( card `  x )  =  x )
28 iscard 7576 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  x )  =  x  <->  ( x  e.  On  /\  A. z  e.  x  z  ~<  x ) )
2928simprbi 452 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  x )  =  x  ->  A. z  e.  x  z  ~<  x )
3027, 29syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  A. z  e.  x  z  ~<  x )
3130ad2antlr 710 . . . . . . . . . . . . . . 15  |-  ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  ->  A. z  e.  x  z  ~<  x )
3231r19.21bi 2616 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  z  ~<  x )
33 domsdomtr 6964 . . . . . . . . . . . . . . 15  |-  ( ( ~P y  ~<_  z  /\  z  ~<  x )  ->  ~P y  ~<  x )
3433expcom 426 . . . . . . . . . . . . . 14  |-  ( z 
~<  x  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3532, 34syl 17 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x )
)
3635adantrr 700 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3726, 36sylbid 208 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  ->  ~P y  ~<  x
) )
3837expr 601 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( -.  y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x
) ) )
3916, 38pm2.61d 152 . . . . . . . . 9  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  ~<  z  ->  ~P y  ~<  x ) )
4039rexlimdva 2642 . . . . . . . 8  |-  ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  ->  ( E. z  e.  x  y  ~<  z  ->  ~P y  ~<  x ) )
4140ralimdva 2596 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( A. y  e.  x  E. z  e.  x  y  ~<  z  ->  A. y  e.  x  ~P y  ~<  x ) )
422, 3, 413anim123d 1264 . . . . . 6  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( ( x  =/=  (/)  /\  ( cf `  x
)  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z )  ->  (
x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) ) )
43 elwina 8276 . . . . . 6  |-  ( x  e.  Inacc W  <->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z
) )
44 elina 8277 . . . . . 6  |-  ( x  e.  Inacc 
<->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) )
4542, 43, 443imtr4g 263 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( x  e.  Inacc W  ->  x  e.  Inacc ) )
461, 45mpd 16 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  ->  x  e.  Inacc )
4746ex 425 . . 3  |-  (GCH  =  _V  ->  ( x  e. 
Inacc W  ->  x  e. 
Inacc ) )
48 inawina 8280 . . 3  |-  ( x  e.  Inacc  ->  x  e.  Inacc W )
4947, 48impbid1 196 . 2  |-  (GCH  =  _V  ->  ( x  e. 
Inacc W  <->  x  e.  Inacc ) )
5049eqrdv 2256 1  |-  (GCH  =  _V  ->  Inacc W  =  Inacc )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   _Vcvv 2763    C_ wss 3127   (/)c0 3430   ~Pcpw 3599   class class class wbr 3997   Oncon0 4364   omcom 4628   ` cfv 4673    ~<_ cdom 6829    ~< csdm 6830   Fincfn 6831   cardccrd 7536   cfccf 7538  GCHcgch 8210   Inacc Wcwina 8272   Inacccina 8273
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-seqom 6428  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-oexp 6453  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-oi 7193  df-har 7240  df-wdom 7241  df-cnf 7331  df-card 7540  df-cf 7542  df-cda 7762  df-fin4 7881  df-gch 8211  df-wina 8274  df-ina 8275
  Copyright terms: Public domain W3C validator