MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Unicode version

Theorem gchina 8254
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina  |-  (GCH  =  _V  ->  Inacc W  =  Inacc )

Proof of Theorem gchina
StepHypRef Expression
1 simpr 449 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  ->  x  e.  Inacc W )
2 idd 23 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( x  =/=  (/)  ->  x  =/=  (/) ) )
3 idd 23 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( ( cf `  x
)  =  x  -> 
( cf `  x
)  =  x ) )
4 simpllr 738 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  x  e.  Inacc W )
5 pwfi 7084 . . . . . . . . . . . . 13  |-  ( y  e.  Fin  <->  ~P y  e.  Fin )
6 isfinite 7286 . . . . . . . . . . . . . 14  |-  ( ~P y  e.  Fin  <->  ~P y  ~<  om )
7 winainf 8249 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  om  C_  x
)
8 ssdomg 6840 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  ( om  C_  x  ->  om  ~<_  x ) )
97, 8mpd 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  Inacc W  ->  om  ~<_  x )
10 sdomdomtr 6927 . . . . . . . . . . . . . . . 16  |-  ( ( ~P y  ~<  om  /\  om  ~<_  x )  ->  ~P y  ~<  x )
1110expcom 426 . . . . . . . . . . . . . . 15  |-  ( om  ~<_  x  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x ) )
129, 11syl 17 . . . . . . . . . . . . . 14  |-  ( x  e.  Inacc W  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x )
)
136, 12syl5bi 210 . . . . . . . . . . . . 13  |-  ( x  e.  Inacc W  ->  ( ~P y  e.  Fin  ->  ~P y  ~<  x
) )
145, 13syl5bi 210 . . . . . . . . . . . 12  |-  ( x  e.  Inacc W  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
154, 14syl 17 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
1615a1dd 44 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x )
) )
17 vex 2743 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
18 simplll 737 . . . . . . . . . . . . . . 15  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> GCH  =  _V )
1917, 18syl5eleqr 2343 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
y  e. GCH )
20 simprr 736 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  -.  y  e.  Fin )
21 gchinf 8212 . . . . . . . . . . . . . 14  |-  ( ( y  e. GCH  /\  -.  y  e.  Fin )  ->  om  ~<_  y )
2219, 20, 21syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  om 
~<_  y )
23 vex 2743 . . . . . . . . . . . . . 14  |-  z  e. 
_V
2423, 18syl5eleqr 2343 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
z  e. GCH )
25 gchpwdom 8229 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  y  /\  y  e. GCH  /\  z  e. GCH )  ->  ( y  ~<  z  <->  ~P y  ~<_  z ) )
2622, 19, 24, 25syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  <->  ~P y  ~<_  z ) )
27 winacard 8247 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Inacc W  ->  ( card `  x )  =  x )
28 iscard 7541 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  x )  =  x  <->  ( x  e.  On  /\  A. z  e.  x  z  ~<  x ) )
2928simprbi 452 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  x )  =  x  ->  A. z  e.  x  z  ~<  x )
3027, 29syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  A. z  e.  x  z  ~<  x )
3130ad2antlr 710 . . . . . . . . . . . . . . 15  |-  ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  ->  A. z  e.  x  z  ~<  x )
3231r19.21bi 2612 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  z  ~<  x )
33 domsdomtr 6929 . . . . . . . . . . . . . . 15  |-  ( ( ~P y  ~<_  z  /\  z  ~<  x )  ->  ~P y  ~<  x )
3433expcom 426 . . . . . . . . . . . . . 14  |-  ( z 
~<  x  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3532, 34syl 17 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x )
)
3635adantrr 700 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3726, 36sylbid 208 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  ->  ~P y  ~<  x
) )
3837expr 601 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( -.  y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x
) ) )
3916, 38pm2.61d 152 . . . . . . . . 9  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  ~<  z  ->  ~P y  ~<  x ) )
4039rexlimdva 2638 . . . . . . . 8  |-  ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  ->  ( E. z  e.  x  y  ~<  z  ->  ~P y  ~<  x ) )
4140ralimdva 2592 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( A. y  e.  x  E. z  e.  x  y  ~<  z  ->  A. y  e.  x  ~P y  ~<  x ) )
422, 3, 413anim123d 1264 . . . . . 6  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( ( x  =/=  (/)  /\  ( cf `  x
)  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z )  ->  (
x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) ) )
43 elwina 8241 . . . . . 6  |-  ( x  e.  Inacc W  <->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z
) )
44 elina 8242 . . . . . 6  |-  ( x  e.  Inacc 
<->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) )
4542, 43, 443imtr4g 263 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( x  e.  Inacc W  ->  x  e.  Inacc ) )
461, 45mpd 16 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  ->  x  e.  Inacc )
4746ex 425 . . 3  |-  (GCH  =  _V  ->  ( x  e. 
Inacc W  ->  x  e. 
Inacc ) )
48 inawina 8245 . . 3  |-  ( x  e.  Inacc  ->  x  e.  Inacc W )
4947, 48impbid1 196 . 2  |-  (GCH  =  _V  ->  ( x  e. 
Inacc W  <->  x  e.  Inacc ) )
5049eqrdv 2254 1  |-  (GCH  =  _V  ->  Inacc W  =  Inacc )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517   _Vcvv 2740    C_ wss 3094   (/)c0 3397   ~Pcpw 3566   class class class wbr 3963   Oncon0 4329   omcom 4593   ` cfv 4638    ~<_ cdom 6794    ~< csdm 6795   Fincfn 6796   cardccrd 7501   cfccf 7503  GCHcgch 8175   Inacc Wcwina 8237   Inacccina 8238
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-seqom 6393  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-oexp 6418  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-oi 7158  df-har 7205  df-wdom 7206  df-cnf 7296  df-card 7505  df-cf 7507  df-cda 7727  df-fin4 7846  df-gch 8176  df-wina 8239  df-ina 8240
  Copyright terms: Public domain W3C validator