MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Unicode version

Theorem gchxpidm 8224
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 4090 . . . . . . . 8  |-  (/)  e.  _V
21a1i 12 . . . . . . 7  |-  ( -.  A  e.  Fin  ->  (/)  e.  _V )
3 xpsneng 6880 . . . . . . 7  |-  ( ( A  e. GCH  /\  (/)  e.  _V )  ->  ( A  X.  { (/) } )  ~~  A )
42, 3sylan2 462 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  { (/)
} )  ~~  A
)
5 ensym 6843 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~~  A  ->  A  ~~  ( A  X.  { (/) } ) )
64, 5syl 17 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  X.  { (/) } ) )
7 df1o2 6424 . . . . . . 7  |-  1o  =  { (/) }
8 id 21 . . . . . . . . . . . 12  |-  ( A  =  (/)  ->  A  =  (/) )
9 0fin 7020 . . . . . . . . . . . 12  |-  (/)  e.  Fin
108, 9syl6eqel 2344 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  A  e. 
Fin )
1110necon3bi 2460 . . . . . . . . . 10  |-  ( -.  A  e.  Fin  ->  A  =/=  (/) )
1211adantl 454 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  =/=  (/) )
13 0sdomg 6923 . . . . . . . . . 10  |-  ( A  e. GCH  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1413adantr 453 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1512, 14mpbird 225 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  -> 
(/)  ~<  A )
16 0sdom1dom 6993 . . . . . . . 8  |-  ( (/)  ~<  A 
<->  1o  ~<_  A )
1715, 16sylib 190 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  1o  ~<_  A )
187, 17syl5eqbrr 3997 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  { (/) }  ~<_  A )
19 xpdom2g 6891 . . . . . 6  |-  ( ( A  e. GCH  /\  { (/)
}  ~<_  A )  -> 
( A  X.  { (/)
} )  ~<_  ( A  X.  A ) )
2018, 19syldan 458 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  { (/)
} )  ~<_  ( A  X.  A ) )
21 endomtr 6852 . . . . 5  |-  ( ( A  ~~  ( A  X.  { (/) } )  /\  ( A  X.  { (/) } )  ~<_  ( A  X.  A ) )  ->  A  ~<_  ( A  X.  A ) )
226, 20, 21syl2anc 645 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ( A  X.  A ) )
23 canth2g 6948 . . . . . . . . . 10  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
2423adantr 453 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<  ~P A
)
25 sdomdom 6822 . . . . . . . . 9  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
2624, 25syl 17 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ~P A )
27 xpdom1g 6892 . . . . . . . 8  |-  ( ( A  e. GCH  /\  A  ~<_  ~P A )  ->  ( A  X.  A )  ~<_  ( ~P A  X.  A
) )
2826, 27syldan 458 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ( ~P A  X.  A ) )
29 pwexg 4132 . . . . . . . . 9  |-  ( A  e. GCH  ->  ~P A  e. 
_V )
3029adantr 453 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P A  e.  _V )
31 xpdom2g 6891 . . . . . . . 8  |-  ( ( ~P A  e.  _V  /\  A  ~<_  ~P A )  -> 
( ~P A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
3230, 26, 31syl2anc 645 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
33 domtr 6847 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( ~P A  X.  A )  /\  ( ~P A  X.  A
)  ~<_  ( ~P A  X.  ~P A ) )  ->  ( A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
3428, 32, 33syl2anc 645 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ( ~P A  X.  ~P A ) )
35 simpl 445 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  e. GCH )
36 pwcdaen 7744 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  A  e. GCH )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A ) )
3735, 36syldan 458 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A
) )
38 ensym 6843 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A )  ->  ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
) )
3937, 38syl 17 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
) )
40 gchcdaidm 8223 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )
41 pwen 6967 . . . . . . . 8  |-  ( ( A  +c  A ) 
~~  A  ->  ~P ( A  +c  A
)  ~~  ~P A
)
4240, 41syl 17 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  A )  ~~  ~P A )
43 entr 6846 . . . . . . 7  |-  ( ( ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
)  /\  ~P ( A  +c  A )  ~~  ~P A )  ->  ( ~P A  X.  ~P A
)  ~~  ~P A
)
4439, 42, 43syl2anc 645 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  ~P A )  ~~  ~P A )
45 domentr 6853 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( ~P A  X.  ~P A )  /\  ( ~P A  X.  ~P A )  ~~  ~P A )  ->  ( A  X.  A )  ~<_  ~P A )
4634, 44, 45syl2anc 645 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ~P A )
47 gchinf 8212 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  om  ~<_  A )
48 pwxpndom 8221 . . . . . . 7  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  X.  A
) )
4947, 48syl 17 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ~P A  ~<_  ( A  X.  A ) )
50 ensym 6843 . . . . . . 7  |-  ( ( A  X.  A ) 
~~  ~P A  ->  ~P A  ~~  ( A  X.  A ) )
51 endom 6821 . . . . . . 7  |-  ( ~P A  ~~  ( A  X.  A )  ->  ~P A  ~<_  ( A  X.  A ) )
5250, 51syl 17 . . . . . 6  |-  ( ( A  X.  A ) 
~~  ~P A  ->  ~P A  ~<_  ( A  X.  A ) )
5349, 52nsyl 115 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ( A  X.  A )  ~~  ~P A )
54 brsdom 6817 . . . . 5  |-  ( ( A  X.  A ) 
~<  ~P A  <->  ( ( A  X.  A )  ~<_  ~P A  /\  -.  ( A  X.  A )  ~~  ~P A ) )
5546, 53, 54sylanbrc 648 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<  ~P A )
5622, 55jca 520 . . 3  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  ~<_  ( A  X.  A )  /\  ( A  X.  A
)  ~<  ~P A ) )
57 gchen1 8180 . . 3  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  ( A  X.  A )  /\  ( A  X.  A )  ~<  ~P A
) )  ->  A  ~~  ( A  X.  A
) )
5856, 57mpdan 652 . 2  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  X.  A ) )
59 ensym 6843 . 2  |-  ( A 
~~  ( A  X.  A )  ->  ( A  X.  A )  ~~  A )
6058, 59syl 17 1  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   _Vcvv 2740   (/)c0 3397   ~Pcpw 3566   {csn 3581   class class class wbr 3963   omcom 4593    X. cxp 4624  (class class class)co 5757   1oc1o 6405    ~~ cen 6793    ~<_ cdom 6794    ~< csdm 6795   Fincfn 6796    +c ccda 7726  GCHcgch 8175
This theorem is referenced by:  gchhar  8226
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-seqom 6393  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-oexp 6418  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-oi 7158  df-har 7205  df-cnf 7296  df-card 7505  df-cda 7727  df-fin4 7846  df-gch 8176
  Copyright terms: Public domain W3C validator