MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoser Unicode version

Theorem geoser 12325
Description: The value of the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^
( N  -  1 ). (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.)
Hypotheses
Ref Expression
geoser.1  |-  ( ph  ->  A  e.  CC )
geoser.2  |-  ( ph  ->  A  =/=  1 )
geoser.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
geoser  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, N    ph, k

Proof of Theorem geoser
StepHypRef Expression
1 geoser.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 geoser.2 . . 3  |-  ( ph  ->  A  =/=  1 )
3 0nn0 9980 . . . 4  |-  0  e.  NN0
43a1i 10 . . 3  |-  ( ph  ->  0  e.  NN0 )
5 geoser.3 . . . 4  |-  ( ph  ->  N  e.  NN0 )
6 nn0uz 10262 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
75, 6syl6eleq 2373 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
81, 2, 4, 7geoserg 12324 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0..^ N ) ( A ^ k )  =  ( ( ( A ^ 0 )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
95nn0zd 10115 . . . 4  |-  ( ph  ->  N  e.  ZZ )
10 fzoval 10876 . . . 4  |-  ( N  e.  ZZ  ->  (
0..^ N )  =  ( 0 ... ( N  -  1 ) ) )
119, 10syl 15 . . 3  |-  ( ph  ->  ( 0..^ N )  =  ( 0 ... ( N  -  1 ) ) )
1211sumeq1d 12174 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0..^ N ) ( A ^ k )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) )
131exp0d 11239 . . . 4  |-  ( ph  ->  ( A ^ 0 )  =  1 )
1413oveq1d 5873 . . 3  |-  ( ph  ->  ( ( A ^
0 )  -  ( A ^ N ) )  =  ( 1  -  ( A ^ N
) ) )
1514oveq1d 5873 . 2  |-  ( ph  ->  ( ( ( A ^ 0 )  -  ( A ^ N ) )  /  ( 1  -  A ) )  =  ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
168, 12, 153eqtr3d 2323 1  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    =/= wne 2446   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    - cmin 9037    / cdiv 9423   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782  ..^cfzo 10870   ^cexp 11104   sum_csu 12158
This theorem is referenced by:  geolim  12326  geolim2  12327  geo2sum  12329  geo2sum2  12330  3dvds  12591  1sgm2ppw  20439  mersenne  20466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator