MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmhmb Unicode version

Theorem ghmmhmb 14710
Description: Group homorphisms and monoid homomorphisms coincide. (Thus,  GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhmb  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  ( S MndHom  T
) )

Proof of Theorem ghmmhmb
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 14709 . . 3  |-  ( f  e.  ( S  GrpHom  T )  ->  f  e.  ( S MndHom  T ) )
2 eqid 2296 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2296 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
4 eqid 2296 . . . . 5  |-  ( +g  `  S )  =  ( +g  `  S )
5 eqid 2296 . . . . 5  |-  ( +g  `  T )  =  ( +g  `  T )
6 simpll 730 . . . . 5  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  ->  S  e.  Grp )
7 simplr 731 . . . . 5  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  ->  T  e.  Grp )
82, 3mhmf 14436 . . . . . 6  |-  ( f  e.  ( S MndHom  T
)  ->  f :
( Base `  S ) --> ( Base `  T )
)
98adantl 452 . . . . 5  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  -> 
f : ( Base `  S ) --> ( Base `  T ) )
102, 4, 5mhmlin 14438 . . . . . . 7  |-  ( ( f  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( f `  ( x ( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T
) ( f `  y ) ) )
11103expb 1152 . . . . . 6  |-  ( ( f  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( f `  (
x ( +g  `  S
) y ) )  =  ( ( f `
 x ) ( +g  `  T ) ( f `  y
) ) )
1211adantll 694 . . . . 5  |-  ( ( ( ( S  e. 
Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  (
f `  ( x
( +g  `  S ) y ) )  =  ( ( f `  x ) ( +g  `  T ) ( f `
 y ) ) )
132, 3, 4, 5, 6, 7, 9, 12isghmd 14708 . . . 4  |-  ( ( ( S  e.  Grp  /\  T  e.  Grp )  /\  f  e.  ( S MndHom  T ) )  -> 
f  e.  ( S 
GrpHom  T ) )
1413ex 423 . . 3  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( f  e.  ( S MndHom  T )  -> 
f  e.  ( S 
GrpHom  T ) ) )
151, 14impbid2 195 . 2  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( f  e.  ( S  GrpHom  T )  <->  f  e.  ( S MndHom  T ) ) )
1615eqrdv 2294 1  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  ( S MndHom  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   -->wf 5267   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378   MndHom cmhm 14429    GrpHom cghm 14696
This theorem is referenced by:  0ghm  14713  resghm2  14716  resghm2b  14717  ghmco  14718  pwsdiagghm  14726  ghmpropd  14736  pwsco1rhm  15526  pwsco2rhm  15527  dchrghm  20511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-map 6790  df-0g 13420  df-mnd 14383  df-mhm 14431  df-grp 14505  df-ghm 14697
  Copyright terms: Public domain W3C validator