HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  golem1 Unicode version

Theorem golem1 22797
Description: Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.)
Hypotheses
Ref Expression
golem1.1  |-  A  e. 
CH
golem1.2  |-  B  e. 
CH
golem1.3  |-  C  e. 
CH
golem1.4  |-  F  =  ( ( _|_ `  A
)  vH  ( A  i^i  B ) )
golem1.5  |-  G  =  ( ( _|_ `  B
)  vH  ( B  i^i  C ) )
golem1.6  |-  H  =  ( ( _|_ `  C
)  vH  ( C  i^i  A ) )
golem1.7  |-  D  =  ( ( _|_ `  B
)  vH  ( B  i^i  A ) )
golem1.8  |-  R  =  ( ( _|_ `  C
)  vH  ( C  i^i  B ) )
golem1.9  |-  S  =  ( ( _|_ `  A
)  vH  ( A  i^i  C ) )
Assertion
Ref Expression
golem1  |-  ( f  e.  States  ->  ( ( ( f `  F )  +  ( f `  G ) )  +  ( f `  H
) )  =  ( ( ( f `  D )  +  ( f `  R ) )  +  ( f `
 S ) ) )

Proof of Theorem golem1
StepHypRef Expression
1 golem1.1 . . . . . . . . . . 11  |-  A  e. 
CH
21choccli 21832 . . . . . . . . . 10  |-  ( _|_ `  A )  e.  CH
3 stcl 22742 . . . . . . . . . 10  |-  ( f  e.  States  ->  ( ( _|_ `  A )  e.  CH  ->  ( f `  ( _|_ `  A ) )  e.  RR ) )
42, 3mpi 18 . . . . . . . . 9  |-  ( f  e.  States  ->  ( f `  ( _|_ `  A ) )  e.  RR )
54recnd 8815 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( _|_ `  A ) )  e.  CC )
6 golem1.2 . . . . . . . . . . 11  |-  B  e. 
CH
76choccli 21832 . . . . . . . . . 10  |-  ( _|_ `  B )  e.  CH
8 stcl 22742 . . . . . . . . . 10  |-  ( f  e.  States  ->  ( ( _|_ `  B )  e.  CH  ->  ( f `  ( _|_ `  B ) )  e.  RR ) )
97, 8mpi 18 . . . . . . . . 9  |-  ( f  e.  States  ->  ( f `  ( _|_ `  B ) )  e.  RR )
109recnd 8815 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( _|_ `  B ) )  e.  CC )
11 golem1.3 . . . . . . . . . . 11  |-  C  e. 
CH
1211choccli 21832 . . . . . . . . . 10  |-  ( _|_ `  C )  e.  CH
13 stcl 22742 . . . . . . . . . 10  |-  ( f  e.  States  ->  ( ( _|_ `  C )  e.  CH  ->  ( f `  ( _|_ `  C ) )  e.  RR ) )
1412, 13mpi 18 . . . . . . . . 9  |-  ( f  e.  States  ->  ( f `  ( _|_ `  C ) )  e.  RR )
1514recnd 8815 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( _|_ `  C ) )  e.  CC )
165, 10, 15addassd 8811 . . . . . . 7  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `
 ( _|_ `  C
) ) )  =  ( ( f `  ( _|_ `  A ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) ) ) )
1710, 15addcld 8808 . . . . . . . 8  |-  ( f  e.  States  ->  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  e.  CC )
185, 17addcomd 8968 . . . . . . 7  |-  ( f  e.  States  ->  ( ( f `
 ( _|_ `  A
) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) ) )  =  ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) ) )
1916, 18eqtrd 2288 . . . . . 6  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `
 ( _|_ `  C
) ) )  =  ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) ) )
2019oveq1d 5793 . . . . 5  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) )  =  ( ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `
 ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
215, 10addcld 8808 . . . . . 6  |-  ( f  e.  States  ->  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( _|_ `  B ) ) )  e.  CC )
221, 6chincli 21985 . . . . . . . . 9  |-  ( A  i^i  B )  e. 
CH
23 stcl 22742 . . . . . . . . 9  |-  ( f  e.  States  ->  ( ( A  i^i  B )  e. 
CH  ->  ( f `  ( A  i^i  B ) )  e.  RR ) )
2422, 23mpi 18 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( A  i^i  B ) )  e.  RR )
2524recnd 8815 . . . . . . 7  |-  ( f  e.  States  ->  ( f `  ( A  i^i  B ) )  e.  CC )
266, 11chincli 21985 . . . . . . . . 9  |-  ( B  i^i  C )  e. 
CH
27 stcl 22742 . . . . . . . . 9  |-  ( f  e.  States  ->  ( ( B  i^i  C )  e. 
CH  ->  ( f `  ( B  i^i  C ) )  e.  RR ) )
2826, 27mpi 18 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( B  i^i  C ) )  e.  RR )
2928recnd 8815 . . . . . . 7  |-  ( f  e.  States  ->  ( f `  ( B  i^i  C ) )  e.  CC )
3025, 29addcld 8808 . . . . . 6  |-  ( f  e.  States  ->  ( ( f `
 ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  e.  CC )
3111, 1chincli 21985 . . . . . . . 8  |-  ( C  i^i  A )  e. 
CH
32 stcl 22742 . . . . . . . 8  |-  ( f  e.  States  ->  ( ( C  i^i  A )  e. 
CH  ->  ( f `  ( C  i^i  A ) )  e.  RR ) )
3331, 32mpi 18 . . . . . . 7  |-  ( f  e.  States  ->  ( f `  ( C  i^i  A ) )  e.  RR )
3433recnd 8815 . . . . . 6  |-  ( f  e.  States  ->  ( f `  ( C  i^i  A ) )  e.  CC )
3521, 30, 15, 34add4d 8989 . . . . 5  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
3617, 30, 5, 34add4d 8989 . . . . 5  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
3720, 35, 363eqtr4d 2298 . . . 4  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
385, 25, 10, 29add4d 8989 . . . . 5  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  =  ( ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( _|_ `  B
) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
3938oveq1d 5793 . . . 4  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
4010, 25, 15, 29add4d 8989 . . . . 5  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  =  ( ( ( f `  ( _|_ `  B ) )  +  ( f `
 ( _|_ `  C
) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
4140oveq1d 5793 . . . 4  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
4237, 39, 413eqtr4d 2298 . . 3  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
431, 6stji1i 22768 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  B ) ) )  =  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( A  i^i  B ) ) ) )
446, 11stji1i 22768 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  C ) ) )  =  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( B  i^i  C ) ) ) )
4543, 44oveq12d 5796 . . . 4  |-  ( f  e.  States  ->  ( ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  C ) ) ) )  =  ( ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
4611, 1stji1i 22768 . . . 4  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  A ) ) )  =  ( ( f `
 ( _|_ `  C
) )  +  ( f `  ( C  i^i  A ) ) ) )
4745, 46oveq12d 5796 . . 3  |-  ( f  e.  States  ->  ( ( ( f `  ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  C ) ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  A ) ) ) )  =  ( ( ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
486, 1stji1i 22768 . . . . . 6  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  =  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( B  i^i  A ) ) ) )
49 incom 3322 . . . . . . . 8  |-  ( B  i^i  A )  =  ( A  i^i  B
)
5049fveq2i 5447 . . . . . . 7  |-  ( f `
 ( B  i^i  A ) )  =  ( f `  ( A  i^i  B ) )
5150oveq2i 5789 . . . . . 6  |-  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  A ) ) )  =  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )
5248, 51syl6eq 2304 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  =  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( A  i^i  B ) ) ) )
5311, 6stji1i 22768 . . . . . 6  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) )  =  ( ( f `
 ( _|_ `  C
) )  +  ( f `  ( C  i^i  B ) ) ) )
54 incom 3322 . . . . . . . 8  |-  ( C  i^i  B )  =  ( B  i^i  C
)
5554fveq2i 5447 . . . . . . 7  |-  ( f `
 ( C  i^i  B ) )  =  ( f `  ( B  i^i  C ) )
5655oveq2i 5789 . . . . . 6  |-  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( C  i^i  B ) ) )  =  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) )
5753, 56syl6eq 2304 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) )  =  ( ( f `
 ( _|_ `  C
) )  +  ( f `  ( B  i^i  C ) ) ) )
5852, 57oveq12d 5796 . . . 4  |-  ( f  e.  States  ->  ( ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  A ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  B ) ) ) )  =  ( ( ( f `  ( _|_ `  B ) )  +  ( f `
 ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
591, 11stji1i 22768 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  C ) ) )  =  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( A  i^i  C ) ) ) )
60 incom 3322 . . . . . . 7  |-  ( A  i^i  C )  =  ( C  i^i  A
)
6160fveq2i 5447 . . . . . 6  |-  ( f `
 ( A  i^i  C ) )  =  ( f `  ( C  i^i  A ) )
6261oveq2i 5789 . . . . 5  |-  ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  C ) ) )  =  ( ( f `  ( _|_ `  A ) )  +  ( f `  ( C  i^i  A ) ) )
6359, 62syl6eq 2304 . . . 4  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  C ) ) )  =  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( C  i^i  A ) ) ) )
6458, 63oveq12d 5796 . . 3  |-  ( f  e.  States  ->  ( ( ( f `  ( ( _|_ `  B )  vH  ( B  i^i  A ) ) )  +  ( f `  (
( _|_ `  C
)  vH  ( C  i^i  B ) ) ) )  +  ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  C ) ) ) )  =  ( ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
6542, 47, 643eqtr4d 2298 . 2  |-  ( f  e.  States  ->  ( ( ( f `  ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  C ) ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  A ) ) ) )  =  ( ( ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  +  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) ) )  +  ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  C ) ) ) ) )
66 golem1.4 . . . . 5  |-  F  =  ( ( _|_ `  A
)  vH  ( A  i^i  B ) )
6766fveq2i 5447 . . . 4  |-  ( f `
 F )  =  ( f `  (
( _|_ `  A
)  vH  ( A  i^i  B ) ) )
68 golem1.5 . . . . 5  |-  G  =  ( ( _|_ `  B
)  vH  ( B  i^i  C ) )
6968fveq2i 5447 . . . 4  |-  ( f `
 G )  =  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  C ) ) )
7067, 69oveq12i 5790 . . 3  |-  ( ( f `  F )  +  ( f `  G ) )  =  ( ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  B ) ) )  +  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  C ) ) ) )
71 golem1.6 . . . 4  |-  H  =  ( ( _|_ `  C
)  vH  ( C  i^i  A ) )
7271fveq2i 5447 . . 3  |-  ( f `
 H )  =  ( f `  (
( _|_ `  C
)  vH  ( C  i^i  A ) ) )
7370, 72oveq12i 5790 . 2  |-  ( ( ( f `  F
)  +  ( f `
 G ) )  +  ( f `  H ) )  =  ( ( ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  C ) ) ) )  +  ( f `  ( ( _|_ `  C )  vH  ( C  i^i  A ) ) ) )
74 golem1.7 . . . . 5  |-  D  =  ( ( _|_ `  B
)  vH  ( B  i^i  A ) )
7574fveq2i 5447 . . . 4  |-  ( f `
 D )  =  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  A ) ) )
76 golem1.8 . . . . 5  |-  R  =  ( ( _|_ `  C
)  vH  ( C  i^i  B ) )
7776fveq2i 5447 . . . 4  |-  ( f `
 R )  =  ( f `  (
( _|_ `  C
)  vH  ( C  i^i  B ) ) )
7875, 77oveq12i 5790 . . 3  |-  ( ( f `  D )  +  ( f `  R ) )  =  ( ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  +  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) ) )
79 golem1.9 . . . 4  |-  S  =  ( ( _|_ `  A
)  vH  ( A  i^i  C ) )
8079fveq2i 5447 . . 3  |-  ( f `
 S )  =  ( f `  (
( _|_ `  A
)  vH  ( A  i^i  C ) ) )
8178, 80oveq12i 5790 . 2  |-  ( ( ( f `  D
)  +  ( f `
 R ) )  +  ( f `  S ) )  =  ( ( ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  A ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  B ) ) ) )  +  ( f `  ( ( _|_ `  A )  vH  ( A  i^i  C ) ) ) )
8265, 73, 813eqtr4g 2313 1  |-  ( f  e.  States  ->  ( ( ( f `  F )  +  ( f `  G ) )  +  ( f `  H
) )  =  ( ( ( f `  D )  +  ( f `  R ) )  +  ( f `
 S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    i^i cin 3112   ` cfv 4659  (class class class)co 5778   RRcr 8690    + caddc 8694   CHcch 21455   _|_cort 21456    vH chj 21459   Statescst 21488
This theorem is referenced by:  golem2  22798
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cc 8015  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771  ax-hilex 21525  ax-hfvadd 21526  ax-hvcom 21527  ax-hvass 21528  ax-hv0cl 21529  ax-hvaddid 21530  ax-hfvmul 21531  ax-hvmulid 21532  ax-hvmulass 21533  ax-hvdistr1 21534  ax-hvdistr2 21535  ax-hvmul0 21536  ax-hfi 21604  ax-his1 21607  ax-his2 21608  ax-his3 21609  ax-his4 21610  ax-hcompl 21727
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-omul 6438  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-acn 7529  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-seq 10999  df-exp 11057  df-hash 11290  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-clim 11913  df-rlim 11914  df-sum 12110  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-cn 16905  df-cnp 16906  df-lm 16907  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cfil 18629  df-cau 18630  df-cmet 18631  df-grpo 20804  df-gid 20805  df-ginv 20806  df-gdiv 20807  df-ablo 20895  df-subgo 20915  df-vc 21048  df-nv 21094  df-va 21097  df-ba 21098  df-sm 21099  df-0v 21100  df-vs 21101  df-nmcv 21102  df-ims 21103  df-dip 21220  df-ssp 21244  df-ph 21337  df-cbn 21388  df-hnorm 21494  df-hba 21495  df-hvsub 21497  df-hlim 21498  df-hcau 21499  df-sh 21732  df-ch 21747  df-oc 21777  df-ch0 21778  df-st 22737
  Copyright terms: Public domain W3C validator