MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Unicode version

Theorem grothac 8452
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 8096). This can be put in a more conventional form via ween 7662 and dfac8 7761. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html). (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
grothac  |-  dom  card  =  _V

Proof of Theorem grothac
Dummy variables  x  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth6 8450 . . . 4  |-  E. u
( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
)  /\  A. x  e.  ~P  u ( x 
~<  u  ->  x  e.  u ) )
2 pweq 3628 . . . . . . . . . . 11  |-  ( x  =  y  ->  ~P x  =  ~P y
)
32sseq1d 3205 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ~P x  C_  u  <->  ~P y  C_  u ) )
42eleq1d 2349 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ~P x  e.  u  <->  ~P y  e.  u ) )
53, 4anbi12d 691 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ~P x  C_  u  /\  ~P x  e.  u )  <->  ( ~P y  C_  u  /\  ~P y  e.  u )
) )
65rspcva 2882 . . . . . . . 8  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ( ~P y  C_  u  /\  ~P y  e.  u
) )
76simpld 445 . . . . . . 7  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ~P y  C_  u )
8 rabss 3250 . . . . . . . 8  |-  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  <->  A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
) )
98biimpri 197 . . . . . . 7  |-  ( A. x  e.  ~P  u
( x  ~<  u  ->  x  e.  u )  ->  { x  e. 
~P u  |  x 
~<  u }  C_  u
)
10 vex 2791 . . . . . . . . . . 11  |-  y  e. 
_V
1110canth2 7014 . . . . . . . . . 10  |-  y  ~<  ~P y
12 sdomdom 6889 . . . . . . . . . 10  |-  ( y 
~<  ~P y  ->  y  ~<_  ~P y )
1311, 12ax-mp 8 . . . . . . . . 9  |-  y  ~<_  ~P y
14 vex 2791 . . . . . . . . . 10  |-  u  e. 
_V
15 ssdomg 6907 . . . . . . . . . 10  |-  ( u  e.  _V  ->  ( ~P y  C_  u  ->  ~P y  ~<_  u )
)
1614, 15ax-mp 8 . . . . . . . . 9  |-  ( ~P y  C_  u  ->  ~P y  ~<_  u )
17 domtr 6914 . . . . . . . . 9  |-  ( ( y  ~<_  ~P y  /\  ~P y  ~<_  u )  -> 
y  ~<_  u )
1813, 16, 17sylancr 644 . . . . . . . 8  |-  ( ~P y  C_  u  ->  y  ~<_  u )
19 tskwe 7583 . . . . . . . . 9  |-  ( ( u  e.  _V  /\  { x  e.  ~P u  |  x  ~<  u }  C_  u )  ->  u  e.  dom  card )
2014, 19mpan 651 . . . . . . . 8  |-  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  ->  u  e.  dom  card )
21 numdom 7665 . . . . . . . . 9  |-  ( ( u  e.  dom  card  /\  y  ~<_  u )  -> 
y  e.  dom  card )
2221expcom 424 . . . . . . . 8  |-  ( y  ~<_  u  ->  ( u  e.  dom  card  ->  y  e. 
dom  card ) )
2318, 20, 22syl2im 34 . . . . . . 7  |-  ( ~P y  C_  u  ->  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  ->  y  e.  dom  card )
)
247, 9, 23syl2im 34 . . . . . 6  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ( A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
)  ->  y  e.  dom  card ) )
25243impia 1148 . . . . 5  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
)  /\  A. x  e.  ~P  u ( x 
~<  u  ->  x  e.  u ) )  -> 
y  e.  dom  card )
2625exlimiv 1666 . . . 4  |-  ( E. u ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u )  /\  A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
) )  ->  y  e.  dom  card )
271, 26ax-mp 8 . . 3  |-  y  e. 
dom  card
2827, 102th 230 . 2  |-  ( y  e.  dom  card  <->  y  e.  _V )
2928eqriv 2280 1  |-  dom  card  =  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023   dom cdm 4689    ~<_ cdom 6861    ~< csdm 6862   cardccrd 7568
This theorem is referenced by:  axgroth3  8453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-groth 8445
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-card 7572
  Copyright terms: Public domain W3C validator