MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothomex Structured version   Unicode version

Theorem grothomex 8704
Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 7598). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
grothomex  |-  om  e.  _V

Proof of Theorem grothomex
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r111 7701 . . . 4  |-  R1 : On
-1-1-> _V
2 omsson 4849 . . . 4  |-  om  C_  On
3 f1ores 5689 . . . 4  |-  ( ( R1 : On -1-1-> _V  /\ 
om  C_  On )  -> 
( R1  |`  om ) : om -1-1-onto-> ( R1 " om ) )
41, 2, 3mp2an 654 . . 3  |-  ( R1  |`  om ) : om -1-1-onto-> ( R1 " om )
5 f1of1 5673 . . 3  |-  ( ( R1  |`  om ) : om -1-1-onto-> ( R1 " om )  ->  ( R1  |`  om ) : om -1-1-> ( R1 " om ) )
64, 5ax-mp 8 . 2  |-  ( R1  |`  om ) : om -1-1-> ( R1 " om )
7 0ex 4339 . . . 4  |-  (/)  e.  _V
8 eleq1 2496 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  y  <->  (/)  e.  y ) )
98anbi1d 686 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )  <-> 
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y ) ) )
109exbidv 1636 . . . 4  |-  ( x  =  (/)  ->  ( E. y ( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )  <->  E. y
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y ) ) )
11 axgroth6 8703 . . . . 5  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y ) )
12 simpr 448 . . . . . . . 8  |-  ( ( ~P z  C_  y  /\  ~P z  e.  y )  ->  ~P z  e.  y )
1312ralimi 2781 . . . . . . 7  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y
)  ->  A. z  e.  y  ~P z  e.  y )
1413anim2i 553 . . . . . 6  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y ) )  ->  (
x  e.  y  /\  A. z  e.  y  ~P z  e.  y ) )
15143adant3 977 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z 
~<  y  ->  z  e.  y ) )  -> 
( x  e.  y  /\  A. z  e.  y  ~P z  e.  y ) )
1611, 15eximii 1587 . . . 4  |-  E. y
( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )
177, 10, 16vtocl 3006 . . 3  |-  E. y
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )
18 r1fnon 7693 . . . . . . . . 9  |-  R1  Fn  On
19 fvelimab 5782 . . . . . . . . 9  |-  ( ( R1  Fn  On  /\  om  C_  On )  ->  (
w  e.  ( R1
" om )  <->  E. x  e.  om  ( R1 `  x )  =  w ) )
2018, 2, 19mp2an 654 . . . . . . . 8  |-  ( w  e.  ( R1 " om )  <->  E. x  e.  om  ( R1 `  x )  =  w )
21 fveq2 5728 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
2221eleq1d 2502 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( R1 `  x )  e.  y  <->  ( R1 `  (/) )  e.  y
) )
23 fveq2 5728 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( R1 `  x )  =  ( R1 `  w
) )
2423eleq1d 2502 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( R1 `  x
)  e.  y  <->  ( R1 `  w )  e.  y ) )
25 fveq2 5728 . . . . . . . . . . . 12  |-  ( x  =  suc  w  -> 
( R1 `  x
)  =  ( R1
`  suc  w )
)
2625eleq1d 2502 . . . . . . . . . . 11  |-  ( x  =  suc  w  -> 
( ( R1 `  x )  e.  y  <-> 
( R1 `  suc  w )  e.  y ) )
27 r10 7694 . . . . . . . . . . . . . 14  |-  ( R1
`  (/) )  =  (/)
2827eleq1i 2499 . . . . . . . . . . . . 13  |-  ( ( R1 `  (/) )  e.  y  <->  (/)  e.  y )
2928biimpri 198 . . . . . . . . . . . 12  |-  ( (/)  e.  y  ->  ( R1
`  (/) )  e.  y )
3029adantr 452 . . . . . . . . . . 11  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 `  (/) )  e.  y )
31 pweq 3802 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R1 `  w )  ->  ~P z  =  ~P ( R1 `  w ) )
3231eleq1d 2502 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R1 `  w )  ->  ( ~P z  e.  y  <->  ~P ( R1 `  w
)  e.  y ) )
3332rspccv 3049 . . . . . . . . . . . . . 14  |-  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w
)  e.  y  ->  ~P ( R1 `  w
)  e.  y ) )
34 nnon 4851 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  om  ->  w  e.  On )
35 r1suc 7696 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  On  ->  ( R1 `  suc  w )  =  ~P ( R1
`  w ) )
3634, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( w  e.  om  ->  ( R1 `  suc  w )  =  ~P ( R1
`  w ) )
3736eleq1d 2502 . . . . . . . . . . . . . . 15  |-  ( w  e.  om  ->  (
( R1 `  suc  w )  e.  y  <->  ~P ( R1 `  w
)  e.  y ) )
3837biimprcd 217 . . . . . . . . . . . . . 14  |-  ( ~P ( R1 `  w
)  e.  y  -> 
( w  e.  om  ->  ( R1 `  suc  w )  e.  y ) )
3933, 38syl6 31 . . . . . . . . . . . . 13  |-  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w
)  e.  y  -> 
( w  e.  om  ->  ( R1 `  suc  w )  e.  y ) ) )
4039com3r 75 . . . . . . . . . . . 12  |-  ( w  e.  om  ->  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w )  e.  y  ->  ( R1 `  suc  w )  e.  y ) ) )
4140adantld 454 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( ( R1
`  w )  e.  y  ->  ( R1 ` 
suc  w )  e.  y ) ) )
4222, 24, 26, 30, 41finds2 4873 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 `  x )  e.  y ) )
43 eleq1 2496 . . . . . . . . . . 11  |-  ( ( R1 `  x )  =  w  ->  (
( R1 `  x
)  e.  y  <->  w  e.  y ) )
4443biimpd 199 . . . . . . . . . 10  |-  ( ( R1 `  x )  =  w  ->  (
( R1 `  x
)  e.  y  ->  w  e.  y )
)
4542, 44syl9 68 . . . . . . . . 9  |-  ( x  e.  om  ->  (
( R1 `  x
)  =  w  -> 
( ( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) ) )
4645rexlimiv 2824 . . . . . . . 8  |-  ( E. x  e.  om  ( R1 `  x )  =  w  ->  ( ( (/) 
e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) )
4720, 46sylbi 188 . . . . . . 7  |-  ( w  e.  ( R1 " om )  ->  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) )
4847com12 29 . . . . . 6  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( w  e.  ( R1 " om )  ->  w  e.  y ) )
4948ssrdv 3354 . . . . 5  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  C_  y )
50 vex 2959 . . . . . 6  |-  y  e. 
_V
5150ssex 4347 . . . . 5  |-  ( ( R1 " om )  C_  y  ->  ( R1 " om )  e.  _V )
5249, 51syl 16 . . . 4  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  e.  _V )
5352exlimiv 1644 . . 3  |-  ( E. y ( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  e. 
_V )
5417, 53ax-mp 8 . 2  |-  ( R1
" om )  e. 
_V
55 f1dmex 5971 . 2  |-  ( ( ( R1  |`  om ) : om -1-1-> ( R1 " om )  /\  ( R1 " om )  e. 
_V )  ->  om  e.  _V )
566, 54, 55mp2an 654 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   class class class wbr 4212   Oncon0 4581   suc csuc 4583   omcom 4845    |` cres 4880   "cima 4881    Fn wfn 5449   -1-1->wf1 5451   -1-1-onto->wf1o 5453   ` cfv 5454    ~< csdm 7108   R1cr1 7688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-groth 8698
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-r1 7690
  Copyright terms: Public domain W3C validator