MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothomex Unicode version

Theorem grothomex 8331
Description: The Tarksi-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 7228). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
grothomex  |-  om  e.  _V

Proof of Theorem grothomex
StepHypRef Expression
1 r111 7331 . . . 4  |-  R1 : On
-1-1-> _V
2 omsson 4551 . . . 4  |-  om  C_  On
3 f1ores 5344 . . . 4  |-  ( ( R1 : On -1-1-> _V  /\ 
om  C_  On )  -> 
( R1  |`  om ) : om -1-1-onto-> ( R1 " om ) )
41, 2, 3mp2an 656 . . 3  |-  ( R1  |`  om ) : om -1-1-onto-> ( R1 " om )
5 f1of1 5328 . . 3  |-  ( ( R1  |`  om ) : om -1-1-onto-> ( R1 " om )  ->  ( R1  |`  om ) : om -1-1-> ( R1 " om ) )
64, 5ax-mp 10 . 2  |-  ( R1  |`  om ) : om -1-1-> ( R1 " om )
7 0ex 4047 . . . 4  |-  (/)  e.  _V
8 eleq1 2313 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  y  <->  (/)  e.  y ) )
98anbi1d 688 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )  <-> 
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y ) ) )
109exbidv 2005 . . . 4  |-  ( x  =  (/)  ->  ( E. y ( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )  <->  E. y
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y ) ) )
11 axgroth6 8330 . . . . 5  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y ) )
12 simpr 449 . . . . . . . . 9  |-  ( ( ~P z  C_  y  /\  ~P z  e.  y )  ->  ~P z  e.  y )
1312ralimi 2580 . . . . . . . 8  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y
)  ->  A. z  e.  y  ~P z  e.  y )
1413anim2i 555 . . . . . . 7  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y ) )  ->  (
x  e.  y  /\  A. z  e.  y  ~P z  e.  y ) )
15143adant3 980 . . . . . 6  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z 
~<  y  ->  z  e.  y ) )  -> 
( x  e.  y  /\  A. z  e.  y  ~P z  e.  y ) )
1615eximi 1574 . . . . 5  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z  ~< 
y  ->  z  e.  y ) )  ->  E. y ( x  e.  y  /\  A. z  e.  y  ~P z  e.  y ) )
1711, 16ax-mp 10 . . . 4  |-  E. y
( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )
187, 10, 17vtocl 2776 . . 3  |-  E. y
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )
19 r1fnon 7323 . . . . . . . . 9  |-  R1  Fn  On
20 fvelimab 5430 . . . . . . . . 9  |-  ( ( R1  Fn  On  /\  om  C_  On )  ->  (
w  e.  ( R1
" om )  <->  E. x  e.  om  ( R1 `  x )  =  w ) )
2119, 2, 20mp2an 656 . . . . . . . 8  |-  ( w  e.  ( R1 " om )  <->  E. x  e.  om  ( R1 `  x )  =  w )
22 fveq2 5377 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
2322eleq1d 2319 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( R1 `  x )  e.  y  <->  ( R1 `  (/) )  e.  y
) )
24 fveq2 5377 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( R1 `  x )  =  ( R1 `  w
) )
2524eleq1d 2319 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( R1 `  x
)  e.  y  <->  ( R1 `  w )  e.  y ) )
26 fveq2 5377 . . . . . . . . . . . 12  |-  ( x  =  suc  w  -> 
( R1 `  x
)  =  ( R1
`  suc  w )
)
2726eleq1d 2319 . . . . . . . . . . 11  |-  ( x  =  suc  w  -> 
( ( R1 `  x )  e.  y  <-> 
( R1 `  suc  w )  e.  y ) )
28 r10 7324 . . . . . . . . . . . . . 14  |-  ( R1
`  (/) )  =  (/)
2928eleq1i 2316 . . . . . . . . . . . . 13  |-  ( ( R1 `  (/) )  e.  y  <->  (/)  e.  y )
3029biimpri 199 . . . . . . . . . . . 12  |-  ( (/)  e.  y  ->  ( R1
`  (/) )  e.  y )
3130adantr 453 . . . . . . . . . . 11  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 `  (/) )  e.  y )
32 pweq 3533 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R1 `  w )  ->  ~P z  =  ~P ( R1 `  w ) )
3332eleq1d 2319 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R1 `  w )  ->  ( ~P z  e.  y  <->  ~P ( R1 `  w
)  e.  y ) )
3433rcla4cv 2818 . . . . . . . . . . . . . 14  |-  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w
)  e.  y  ->  ~P ( R1 `  w
)  e.  y ) )
35 nnon 4553 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  om  ->  w  e.  On )
36 r1suc 7326 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  On  ->  ( R1 `  suc  w )  =  ~P ( R1
`  w ) )
3735, 36syl 17 . . . . . . . . . . . . . . . 16  |-  ( w  e.  om  ->  ( R1 `  suc  w )  =  ~P ( R1
`  w ) )
3837eleq1d 2319 . . . . . . . . . . . . . . 15  |-  ( w  e.  om  ->  (
( R1 `  suc  w )  e.  y  <->  ~P ( R1 `  w
)  e.  y ) )
3938biimprcd 218 . . . . . . . . . . . . . 14  |-  ( ~P ( R1 `  w
)  e.  y  -> 
( w  e.  om  ->  ( R1 `  suc  w )  e.  y ) )
4034, 39syl6 31 . . . . . . . . . . . . 13  |-  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w
)  e.  y  -> 
( w  e.  om  ->  ( R1 `  suc  w )  e.  y ) ) )
4140com3r 75 . . . . . . . . . . . 12  |-  ( w  e.  om  ->  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w )  e.  y  ->  ( R1 `  suc  w )  e.  y ) ) )
4241adantld 455 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( ( R1
`  w )  e.  y  ->  ( R1 ` 
suc  w )  e.  y ) ) )
4323, 25, 27, 31, 42finds2 4575 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 `  x )  e.  y ) )
44 eleq1 2313 . . . . . . . . . . 11  |-  ( ( R1 `  x )  =  w  ->  (
( R1 `  x
)  e.  y  <->  w  e.  y ) )
4544biimpd 200 . . . . . . . . . 10  |-  ( ( R1 `  x )  =  w  ->  (
( R1 `  x
)  e.  y  ->  w  e.  y )
)
4643, 45syl9 68 . . . . . . . . 9  |-  ( x  e.  om  ->  (
( R1 `  x
)  =  w  -> 
( ( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) ) )
4746rexlimiv 2623 . . . . . . . 8  |-  ( E. x  e.  om  ( R1 `  x )  =  w  ->  ( ( (/) 
e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) )
4821, 47sylbi 189 . . . . . . 7  |-  ( w  e.  ( R1 " om )  ->  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) )
4948com12 29 . . . . . 6  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( w  e.  ( R1 " om )  ->  w  e.  y ) )
5049ssrdv 3106 . . . . 5  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  C_  y )
51 vex 2730 . . . . . 6  |-  y  e. 
_V
5251ssex 4055 . . . . 5  |-  ( ( R1 " om )  C_  y  ->  ( R1 " om )  e.  _V )
5350, 52syl 17 . . . 4  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  e.  _V )
5453exlimiv 2023 . . 3  |-  ( E. y ( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  e. 
_V )
5518, 54ax-mp 10 . 2  |-  ( R1
" om )  e. 
_V
56 f1dmex 5603 . 2  |-  ( ( ( R1  |`  om ) : om -1-1-> ( R1 " om )  /\  ( R1 " om )  e. 
_V )  ->  om  e.  _V )
576, 55, 56mp2an 656 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   _Vcvv 2727    C_ wss 3078   (/)c0 3362   ~Pcpw 3530   class class class wbr 3920   Oncon0 4285   suc csuc 4287   omcom 4547    |` cres 4582   "cima 4583    Fn wfn 4587   -1-1->wf1 4589   -1-1-onto->wf1o 4591   ` cfv 4592    ~< csdm 6748   R1cr1 7318
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-groth 8325
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-r1 7320
  Copyright terms: Public domain W3C validator