MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpw Unicode version

Theorem grothpw 8302
Description: Derive the Axiom of Power Sets ax-pow 4061 from the Tarksi-Grothendieck axiom ax-groth 8299. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html. Note that ax-pow 4061 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.)
Assertion
Ref Expression
grothpw  |-  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y )
Distinct variable group:    x, y, z, w

Proof of Theorem grothpw
StepHypRef Expression
1 axgroth5 8300 . . 3  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )
2 simpl 439 . . . . . . . . 9  |-  ( ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  ->  ~P z  C_  y )
32ralimi 2566 . . . . . . . 8  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  A. z  e.  y  ~P z  C_  y
)
4 pweq 3513 . . . . . . . . . 10  |-  ( z  =  x  ->  ~P z  =  ~P x
)
54sseq1d 3106 . . . . . . . . 9  |-  ( z  =  x  ->  ( ~P z  C_  y  <->  ~P x  C_  y ) )
65rcla4cv 2803 . . . . . . . 8  |-  ( A. z  e.  y  ~P z  C_  y  ->  (
x  e.  y  ->  ~P x  C_  y ) )
73, 6syl 16 . . . . . . 7  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  ( x  e.  y  ->  ~P x  C_  y ) )
87anim2i 549 . . . . . 6  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
) )  ->  (
x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) ) )
983adant3 974 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  -> 
( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y ) ) )
10 pm3.35 567 . . . . 5  |-  ( ( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) )  ->  ~P x  C_  y )
11 vex 2715 . . . . . 6  |-  y  e. 
_V
1211ssex 4034 . . . . 5  |-  ( ~P x  C_  y  ->  ~P x  e.  _V )
139, 10, 123syl 19 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  ->  ~P x  e.  _V )
1413exlimiv 2011 . . 3  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )  ->  ~P x  e.  _V )
151, 14ax-mp 9 . 2  |-  ~P x  e.  _V
16 pwidg 3521 . . . . 5  |-  ( ~P x  e.  _V  ->  ~P x  e.  ~P ~P x )
17 pweq 3513 . . . . . . 7  |-  ( y  =  ~P x  ->  ~P y  =  ~P ~P x )
1817eleq2d 2308 . . . . . 6  |-  ( y  =  ~P x  -> 
( ~P x  e. 
~P y  <->  ~P x  e.  ~P ~P x ) )
1918cla4egv 2791 . . . . 5  |-  ( ~P x  e.  _V  ->  ( ~P x  e.  ~P ~P x  ->  E. y ~P x  e.  ~P y ) )
2016, 19mpd 15 . . . 4  |-  ( ~P x  e.  _V  ->  E. y ~P x  e. 
~P y )
21 elex 2720 . . . . 5  |-  ( ~P x  e.  ~P y  ->  ~P x  e.  _V )
2221exlimiv 2011 . . . 4  |-  ( E. y ~P x  e. 
~P y  ->  ~P x  e.  _V )
2320, 22impbii 179 . . 3  |-  ( ~P x  e.  _V  <->  E. y ~P x  e.  ~P y )
2411elpw2 4043 . . . . 5  |-  ( ~P x  e.  ~P y  <->  ~P x  C_  y )
25 pwss 3523 . . . . . 6  |-  ( ~P x  C_  y  <->  A. z
( z  C_  x  ->  z  e.  y ) )
26 dfss2 3072 . . . . . . . 8  |-  ( z 
C_  x  <->  A. w
( w  e.  z  ->  w  e.  x
) )
2726imbi1i 314 . . . . . . 7  |-  ( ( z  C_  x  ->  z  e.  y )  <->  ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
2827albii 1543 . . . . . 6  |-  ( A. z ( z  C_  x  ->  z  e.  y )  <->  A. z ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
2925, 28bitri 239 . . . . 5  |-  ( ~P x  C_  y  <->  A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y ) )
3024, 29bitri 239 . . . 4  |-  ( ~P x  e.  ~P y  <->  A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
3130exbii 1569 . . 3  |-  ( E. y ~P x  e. 
~P y  <->  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
3223, 31bitri 239 . 2  |-  ( ~P x  e.  _V  <->  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y ) )
3315, 32mpbi 198 1  |-  E. y A. z ( A. w
( w  e.  z  ->  w  e.  x
)  ->  z  e.  y )
Colors of variables: wff set class
Syntax hints:    -> wi 5    \/ wo 356    /\ wa 357    /\ w3a 933   A.wal 1521   E.wex 1526    = wceq 1608    e. wcel 1610   A.wral 2495   E.wrex 2496   _Vcvv 2712    C_ wss 3058   ~Pcpw 3510   class class class wbr 3900    ~~ cen 6720
This theorem was proved from axioms:  ax-1 6  ax-2 7  ax-3 8  ax-mp 9  ax-5 1522  ax-6 1523  ax-7 1524  ax-gen 1525  ax-8 1612  ax-11 1613  ax-17 1617  ax-12o 1653  ax-10 1667  ax-9 1673  ax-4 1681  ax-16 1915  ax-ext 2222  ax-sep 4017  ax-groth 8299
This theorem depends on definitions:  df-bi 176  df-or 358  df-an 359  df-3an 935  df-tru 1309  df-ex 1527  df-nf 1529  df-sb 1872  df-clab 2228  df-cleq 2234  df-clel 2237  df-nfc 2362  df-ral 2499  df-rex 2500  df-v 2714  df-in 3065  df-ss 3069  df-pw 3512
  Copyright terms: Public domain W3C validator