MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothtsk Structured version   Unicode version

Theorem grothtsk 8700
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.)
Assertion
Ref Expression
grothtsk  |-  U. Tarski  =  _V

Proof of Theorem grothtsk
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 8689 . . . . 5  |-  E. x
( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) )
2 vex 2951 . . . . . . . . 9  |-  x  e. 
_V
3 eltskg 8615 . . . . . . . . 9  |-  ( x  e.  _V  ->  (
x  e.  Tarski  <->  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) ) )
42, 3ax-mp 8 . . . . . . . 8  |-  ( x  e.  Tarski 
<->  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) )
54anbi2i 676 . . . . . . 7  |-  ( ( w  e.  x  /\  x  e.  Tarski )  <->  ( w  e.  x  /\  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) ) ) )
6 3anass 940 . . . . . . 7  |-  ( ( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) )  <->  ( w  e.  x  /\  ( A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e. 
~P  x ( y 
~~  x  \/  y  e.  x ) ) ) )
75, 6bitr4i 244 . . . . . 6  |-  ( ( w  e.  x  /\  x  e.  Tarski )  <->  ( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) )
87exbii 1592 . . . . 5  |-  ( E. x ( w  e.  x  /\  x  e. 
Tarski )  <->  E. x ( w  e.  x  /\  A. y  e.  x  ( ~P y  C_  x  /\  E. z  e.  x  ~P y  C_  z )  /\  A. y  e.  ~P  x
( y  ~~  x  \/  y  e.  x
) ) )
91, 8mpbir 201 . . . 4  |-  E. x
( w  e.  x  /\  x  e.  Tarski )
10 eluni 4010 . . . 4  |-  ( w  e.  U. Tarski  <->  E. x
( w  e.  x  /\  x  e.  Tarski ) )
119, 10mpbir 201 . . 3  |-  w  e. 
U. Tarski
12 vex 2951 . . 3  |-  w  e. 
_V
1311, 122th 231 . 2  |-  ( w  e.  U. Tarski  <->  w  e.  _V )
1413eqriv 2432 1  |-  U. Tarski  =  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   ~Pcpw 3791   U.cuni 4007   class class class wbr 4204    ~~ cen 7098   Tarskictsk 8613
This theorem is referenced by:  inaprc  8701  tskmval  8704  tskmcl  8706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-groth 8688
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-tsk 8614
  Copyright terms: Public domain W3C validator