MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidpropd Unicode version

Theorem grpidpropd 14710
Description: If two structures have the same group components (properties), they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypotheses
Ref Expression
mndpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
mndpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
mndpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grpidpropd  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, L, y

Proof of Theorem grpidpropd
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpropd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
21eqeq1d 2443 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  y  <-> 
( x ( +g  `  L ) y )  =  y ) )
31proplem 13903 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( +g  `  K ) w )  =  ( z ( +g  `  L ) w ) )
43proplem 13903 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( +g  `  K ) x )  =  ( y ( +g  `  L ) x ) )
54ancom2s 778 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( y ( +g  `  K ) x )  =  ( y ( +g  `  L ) x ) )
65eqeq1d 2443 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( y ( +g  `  K ) x )  =  y  <-> 
( y ( +g  `  L ) x )  =  y ) )
72, 6anbi12d 692 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y )  <->  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
87anassrs 630 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
( ( x ( +g  `  K ) y )  =  y  /\  ( y ( +g  `  K ) x )  =  y )  <->  ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
98ralbidva 2713 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x ( +g  `  K ) y )  =  y  /\  ( y ( +g  `  K ) x )  =  y )  <->  A. y  e.  B  ( ( x ( +g  `  L ) y )  =  y  /\  ( y ( +g  `  L ) x )  =  y ) ) )
109pm5.32da 623 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
11 mndpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
1211eleq2d 2502 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  K
) ) )
1311raleqdv 2902 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y )  <->  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )
1412, 13anbi12d 692 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  ( Base `  K
)  /\  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) ) )
15 mndpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
1615eleq2d 2502 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  L
) ) )
1715raleqdv 2902 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y )  <->  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
1816, 17anbi12d 692 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) )  <->  ( x  e.  ( Base `  L
)  /\  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
1910, 14, 183bitr3d 275 . . 3  |-  ( ph  ->  ( ( x  e.  ( Base `  K
)  /\  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  ( Base `  L
)  /\  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
2019iotabidv 5430 . 2  |-  ( ph  ->  ( iota x ( x  e.  ( Base `  K )  /\  A. y  e.  ( Base `  K ) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )  =  ( iota x
( x  e.  (
Base `  L )  /\  A. y  e.  (
Base `  L )
( ( x ( +g  `  L ) y )  =  y  /\  ( y ( +g  `  L ) x )  =  y ) ) ) )
21 eqid 2435 . . 3  |-  ( Base `  K )  =  (
Base `  K )
22 eqid 2435 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
23 eqid 2435 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
2421, 22, 23grpidval 14695 . 2  |-  ( 0g
`  K )  =  ( iota x ( x  e.  ( Base `  K )  /\  A. y  e.  ( Base `  K ) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )
25 eqid 2435 . . 3  |-  ( Base `  L )  =  (
Base `  L )
26 eqid 2435 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
27 eqid 2435 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
2825, 26, 27grpidval 14695 . 2  |-  ( 0g
`  L )  =  ( iota x ( x  e.  ( Base `  L )  /\  A. y  e.  ( Base `  L ) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
2920, 24, 283eqtr4g 2492 1  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   iotacio 5407   ` cfv 5445  (class class class)co 6072   Basecbs 13457   +g cplusg 13517   0gc0g 13711
This theorem is referenced by:  mhmpropd  14732  gsumpropd  14764  grppropd  14811  grpinvpropd  14854  mulgpropd  14911  prds1  15708  rngidpropd  15788  drngprop  15834  drngpropd  15850  abvpropd  15918  lbspropd  16159  sralmod0  16247  opsr0  16600  mplbaspropd  16618  ply1mpl0  16637  phlpropd  16874  nmpropd  18629  nmpropd2  18630  tng0  18672  mdegpropd  19995  ply1divalg2  20049  gsumpropd2lem  24208  zlm0  24334  mat0  27387  hlhils0  32585  hlhil0  32595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-iota 5409  df-fun 5447  df-fv 5453  df-ov 6075  df-0g 13715
  Copyright terms: Public domain W3C validator