MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvadd Unicode version

Theorem grpinvadd 14855
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
Hypotheses
Ref Expression
grpinvadd.b  |-  B  =  ( Base `  G
)
grpinvadd.p  |-  .+  =  ( +g  `  G )
grpinvadd.n  |-  N  =  ( inv g `  G )
Assertion
Ref Expression
grpinvadd  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )

Proof of Theorem grpinvadd
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 958 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 959 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 grpinvadd.b . . . . . . 7  |-  B  =  ( Base `  G
)
5 grpinvadd.n . . . . . . 7  |-  N  =  ( inv g `  G )
64, 5grpinvcl 14838 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
763adant2 976 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
84, 5grpinvcl 14838 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
983adant3 977 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  X
)  e.  B )
10 grpinvadd.p . . . . . 6  |-  .+  =  ( +g  `  G )
114, 10grpcl 14806 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N `  Y )  e.  B  /\  ( N `  X )  e.  B )  ->  (
( N `  Y
)  .+  ( N `  X ) )  e.  B )
121, 7, 9, 11syl3anc 1184 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  ( N `  X )
)  e.  B )
134, 10grpass 14807 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( N `  Y )  .+  ( N `  X )
)  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( X  .+  ( Y 
.+  ( ( N `
 Y )  .+  ( N `  X ) ) ) ) )
141, 2, 3, 12, 13syl13anc 1186 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( X  .+  ( Y  .+  ( ( N `  Y ) 
.+  ( N `  X ) ) ) ) )
15 eqid 2435 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
164, 10, 15, 5grprinv 14840 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  ( N `  Y )
)  =  ( 0g
`  G ) )
17163adant2 976 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  ( N `  Y )
)  =  ( 0g
`  G ) )
1817oveq1d 6087 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  ( N `  Y ) )  .+  ( N `
 X ) )  =  ( ( 0g
`  G )  .+  ( N `  X ) ) )
194, 10grpass 14807 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  ( N `  Y
)  e.  B  /\  ( N `  X )  e.  B ) )  ->  ( ( Y 
.+  ( N `  Y ) )  .+  ( N `  X ) )  =  ( Y 
.+  ( ( N `
 Y )  .+  ( N `  X ) ) ) )
201, 3, 7, 9, 19syl13anc 1186 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( Y  .+  ( N `  Y ) )  .+  ( N `
 X ) )  =  ( Y  .+  ( ( N `  Y )  .+  ( N `  X )
) ) )
214, 10, 15grplid 14823 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( 0g `  G )  .+  ( N `  X )
)  =  ( N `
 X ) )
221, 9, 21syl2anc 643 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  ( N `  X )
)  =  ( N `
 X ) )
2318, 20, 223eqtr3d 2475 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( N `  X ) )
2423oveq2d 6088 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( Y  .+  ( ( N `
 Y )  .+  ( N `  X ) ) ) )  =  ( X  .+  ( N `  X )
) )
254, 10, 15, 5grprinv 14840 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
26253adant3 977 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
2714, 24, 263eqtrd 2471 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .+  (
( N `  Y
)  .+  ( N `  X ) ) )  =  ( 0g `  G ) )
284, 10grpcl 14806 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
294, 10, 15, 5grpinvid1 14841 . . 3  |-  ( ( G  e.  Grp  /\  ( X  .+  Y )  e.  B  /\  (
( N `  Y
)  .+  ( N `  X ) )  e.  B )  ->  (
( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) )  <->  ( ( X 
.+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( 0g `  G ) ) )
301, 28, 12, 29syl3anc 1184 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  ( X  .+  Y ) )  =  ( ( N `  Y ) 
.+  ( N `  X ) )  <->  ( ( X  .+  Y )  .+  ( ( N `  Y )  .+  ( N `  X )
) )  =  ( 0g `  G ) ) )
3127, 30mpbird 224 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5445  (class class class)co 6072   Basecbs 13457   +g cplusg 13517   0gc0g 13711   Grpcgrp 14673   inv gcminusg 14674
This theorem is referenced by:  grpinvsub  14859  mulgdir  14903  eqger  14978  eqgcpbl  14982  invoppggim  15144  sylow2blem1  15242  lsmsubg  15276  ablinvadd  15422  ablsub2inv  15423  invghm  15441  rdivmuldivd  24215  dvrcan5  24217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-riota 6540  df-0g 13715  df-mnd 14678  df-grp 14800  df-minusg 14801
  Copyright terms: Public domain W3C validator