HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem grpinveu 10167
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55.
Hypotheses
Ref Expression
grpinveu.b |- B = (Base` G)
grpinveu.p |- P = ( +g ` G)
grpinveu.o |- O = (0g` G)
Assertion
Ref Expression
grpinveu |- ((G e. Grp /\ X e. B) -> E!y e. B (yPX) = O)
Distinct variable groups:   y,B   y,G   y,P   y,O   y,X

Proof of Theorem grpinveu
StepHypRef Expression
1 grpinveu.b . . . . 5 |- B = (Base` G)
2 grpinveu.p . . . . 5 |- P = ( +g ` G)
3 grpinveu.o . . . . 5 |- O = (0g` G)
41, 2, 3grpidinv2 10162 . . . 4 |- ((G e. Grp /\ X e. B) -> (((OPX) = X /\ (XPO) = X) /\ E.y e. B ((yPX) = O /\ (XPy) = O)))
5 simpl 459 . . . . . 6 |- (((yPX) = O /\ (XPy) = O) -> (yPX) = O)
65reximi 2259 . . . . 5 |- (E.y e. B ((yPX) = O /\ (XPy) = O) -> E.y e. B (yPX) = O)
76adantl 469 . . . 4 |- ((((OPX) = X /\ (XPO) = X) /\ E.y e. B ((yPX) = O /\ (XPy) = O)) -> E.y e. B (yPX) = O)
84, 7syl 14 . . 3 |- ((G e. Grp /\ X e. B) -> E.y e. B (yPX) = O)
9 eqtr3 1972 . . . . . . . . . . . 12 |- (((yPX) = O /\ (zPX) = O) -> (yPX) = (zPX))
101, 2grprcan 10166 . . . . . . . . . . . 12 |- ((G e. Grp /\ (y e. B /\ z e. B /\ X e. B)) -> ((yPX) = (zPX) <-> y = z))
119, 10syl5ib 223 . . . . . . . . . . 11 |- ((G e. Grp /\ (y e. B /\ z e. B /\ X e. B)) -> (((yPX) = O /\ (zPX) = O) -> y = z))
12113exp2 1166 . . . . . . . . . 10 |- (G e. Grp -> (y e. B -> (z e. B -> (X e. B -> (((yPX) = O /\ (zPX) = O) -> y = z)))))
1312com24 80 . . . . . . . . 9 |- (G e. Grp -> (X e. B -> (z e. B -> (y e. B -> (((yPX) = O /\ (zPX) = O) -> y = z)))))
1413imp41 592 . . . . . . . 8 |- ((((G e. Grp /\ X e. B) /\ z e. B) /\ y e. B) -> (((yPX) = O /\ (zPX) = O) -> y = z))
1514an32s 769 . . . . . . 7 |- ((((G e. Grp /\ X e. B) /\ y e. B) /\ z e. B) -> (((yPX) = O /\ (zPX) = O) -> y = z))
1615exp3a 444 . . . . . 6 |- ((((G e. Grp /\ X e. B) /\ y e. B) /\ z e. B) -> ((yPX) = O -> ((zPX) = O -> y = z)))
1716ralrimdva 2242 . . . . 5 |- (((G e. Grp /\ X e. B) /\ y e. B) -> ((yPX) = O -> A.z e. B ((zPX) = O -> y = z)))
1817ancld 553 . . . 4 |- (((G e. Grp /\ X e. B) /\ y e. B) -> ((yPX) = O -> ((yPX) = O /\ A.z e. B ((zPX) = O -> y = z))))
1918reximdva 2264 . . 3 |- ((G e. Grp /\ X e. B) -> (E.y e. B (yPX) = O -> E.y e. B ((yPX) = O /\ A.z e. B ((zPX) = O -> y = z))))
208, 19mpd 13 . 2 |- ((G e. Grp /\ X e. B) -> E.y e. B ((yPX) = O /\ A.z e. B ((zPX) = O -> y = z)))
21 oveq1 4936 . . . 4 |- (y = z -> (yPX) = (zPX))
2221eqeq1d 1961 . . 3 |- (y = z -> ((yPX) = O <-> (zPX) = O))
2322reu8 2521 . 2 |- (E!y e. B (yPX) = O <-> E.y e. B ((yPX) = O /\ A.z e. B ((zPX) = O -> y = z)))
2420, 23sylibr 216 1 |- ((G e. Grp /\ X e. B) -> E!y e. B (yPX) = O)
Colors of variables: wff set class
Syntax hints:   -> wi 4   /\ wa 377   /\ w3a 937   = wceq 1449   e. wcel 1451  A.wral 2162  E.wrex 2163  E!wreu 2164  ` cfv 4016  (class class class)co 4931  Basecbs 9910   +g cplusg 10118  Grpcgrp 10119  0gc0g 10120
This theorem is referenced by:  grpinvcl 10175  grpinv 10176  isgrpinv 10181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1367  ax-6 1368  ax-7 1369  ax-gen 1370  ax-8 1453  ax-10 1454  ax-11 1455  ax-12 1456  ax-13 1457  ax-14 1458  ax-17 1465  ax-9 1480  ax-4 1486  ax-16 1664  ax-ext 1935  ax-sep 3469  ax-nul 3478  ax-pr 3538  ax-un 3808
This theorem depends on definitions:  df-bi 185  df-or 378  df-an 379  df-3an 939  df-ex 1372  df-sb 1626  df-eu 1853  df-mo 1854  df-clab 1941  df-cleq 1946  df-clel 1949  df-ne 2073  df-ral 2166  df-rex 2167  df-reu 2168  df-rab 2169  df-v 2360  df-sbc 2525  df-dif 2660  df-un 2662  df-in 2664  df-ss 2666  df-nul 2922  df-if 3023  df-sn 3096  df-pr 3097  df-op 3100  df-uni 3229  df-br 3374  df-opab 3428  df-id 3624  df-xp 4018  df-rel 4019  df-cnv 4020  df-co 4021  df-dm 4022  df-rn 4023  df-res 4024  df-ima 4025  df-fun 4026  df-fv 4032  df-ov 4933  df-mpt 5068  df-iota 5270  df-riota 5818  df-grp 10125  df-0g 10126
Copyright terms: Public domain