MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinveu Unicode version

Theorem grpinveu 13280
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b  |-  B  =  ( Base `  G
)
grpinveu.p  |-  .+  =  ( +g  `  G )
grpinveu.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpinveu  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, X

Proof of Theorem grpinveu
StepHypRef Expression
1 grpinveu.b . . . 4  |-  B  =  ( Base `  G
)
2 grpinveu.p . . . 4  |-  .+  =  ( +g  `  G )
3 grpinveu.o . . . 4  |-  .0.  =  ( 0g `  G )
41, 2, 3grpinvex 13261 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
5 eqtr3 2119 . . . . . . . . . . . 12  |-  ( ( ( y  .+  X
)  =  .0.  /\  ( z  .+  X
)  =  .0.  )  ->  ( y  .+  X
)  =  ( z 
.+  X ) )
61, 2grprcan 13279 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( y  .+  X
)  =  ( z 
.+  X )  <->  y  =  z ) )
75, 6syl5ib 208 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
873exp2 1134 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (
y  e.  B  -> 
( z  e.  B  ->  ( X  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
98com24 81 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( z  e.  B  -> 
( y  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
109imp41 572 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  z  e.  B )  /\  y  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1110an32s 743 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1211exp3a 422 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( y  .+  X
)  =  .0.  ->  ( ( z  .+  X
)  =  .0.  ->  y  =  z ) ) )
1312ralrimdva 2392 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
1413ancld 531 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) ) )
1514reximdva 2414 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( E. y  e.  B  ( y  .+  X )  =  .0. 
->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) ) )
164, 15mpd 14 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) )
17 oveq1 5411 . . . 4  |-  ( y  =  z  ->  (
y  .+  X )  =  ( z  .+  X ) )
1817eqeq1d 2108 . . 3  |-  ( y  =  z  ->  (
( y  .+  X
)  =  .0.  <->  ( z  .+  X )  =  .0.  ) )
1918reu8 2683 . 2  |-  ( E! y  e.  B  ( y  .+  X )  =  .0.  <->  E. y  e.  B  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
2016, 19sylibr 201 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 356    /\ w3a 900    = wceq 1531    e. wcel 1533   A.wral 2311   E.wrex 2312   E!wreu 2313   ` cfv 4312  (class class class)co 5404   Basecbs 12306   +g cplusg 12361   0gc0g 12539   Grpcgrp 12968
This theorem is referenced by:  grpinvf  13290  grplinv  13292  isgrpinv  13296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1452  ax-6 1453  ax-7 1454  ax-gen 1455  ax-8 1535  ax-11 1536  ax-13 1537  ax-14 1538  ax-17 1540  ax-12o 1574  ax-10 1588  ax-9 1594  ax-4 1601  ax-16 1787  ax-ext 2082  ax-sep 3745  ax-nul 3753  ax-pr 3813  ax-un 4105
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3an 902  df-ex 1457  df-sb 1748  df-eu 1970  df-mo 1971  df-clab 2088  df-cleq 2093  df-clel 2096  df-ne 2220  df-ral 2315  df-rex 2316  df-reu 2317  df-rab 2318  df-v 2514  df-sbc 2688  df-dif 2833  df-un 2835  df-in 2837  df-ss 2841  df-nul 3111  df-if 3221  df-sn 3300  df-pr 3301  df-op 3303  df-uni 3469  df-br 3631  df-opab 3685  df-mpt 3686  df-id 3904  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-fun 4322  df-fv 4328  df-ov 5407  df-iota 5814  df-0g 12543  df-mnd 12973  df-grp 13253
  Copyright terms: Public domain W3C validator