HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem grpinveu 12533
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b  |-  B  =  ( Base `  G
)
grpinveu.p  |-  .+  =  ( +g  `  G )
grpinveu.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpinveu  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, X

Proof of Theorem grpinveu
StepHypRef Expression
1 grpinveu.b . . . 4  |-  B  =  ( Base `  G
)
2 grpinveu.p . . . 4  |-  .+  =  ( +g  `  G )
3 grpinveu.o . . . 4  |-  .0.  =  ( 0g `  G )
41, 2, 3grpinvex 12514 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
5 eqtr3 2080 . . . . . . . . . . . 12  |-  ( ( ( y  .+  X
)  =  .0.  /\  ( z  .+  X
)  =  .0.  )  ->  ( y  .+  X
)  =  ( z 
.+  X ) )
61, 2grprcan 12532 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( y  .+  X
)  =  ( z 
.+  X )  <->  y  =  z ) )
75, 6syl5ib 208 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
873exp2 1125 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (
y  e.  B  -> 
( z  e.  B  ->  ( X  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
98com24 81 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( z  e.  B  -> 
( y  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
109imp41 568 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  z  e.  B )  /\  y  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1110an32s 736 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1211exp3a 421 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( y  .+  X
)  =  .0.  ->  ( ( z  .+  X
)  =  .0.  ->  y  =  z ) ) )
1312ralrimdva 2352 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
1413ancld 529 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) ) )
1514reximdva 2374 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( E. y  e.  B  ( y  .+  X )  =  .0. 
->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) ) )
164, 15mpd 14 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) )
17 oveq1 5360 . . . 4  |-  ( y  =  z  ->  (
y  .+  X )  =  ( z  .+  X ) )
1817eqeq1d 2069 . . 3  |-  ( y  =  z  ->  (
( y  .+  X
)  =  .0.  <->  ( z  .+  X )  =  .0.  ) )
1918reu8 2643 . 2  |-  ( E! y  e.  B  ( y  .+  X )  =  .0.  <->  E. y  e.  B  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
2016, 19sylibr 201 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 356    /\ w3a 893    = wceq 1517    e. wcel 1519   A.wral 2271   E.wrex 2272   E!wreu 2273   ` cfv 4264  (class class class)co 5353   Basecbs 11630   +g cplusg 11684   0gc0g 11862   Grpcgrp 12226
This theorem is referenced by:  grpinvf  12543  grplinv  12545  isgrpinv  12549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1439  ax-6 1440  ax-7 1441  ax-gen 1442  ax-8 1521  ax-11 1522  ax-13 1523  ax-14 1524  ax-17 1526  ax-12o 1559  ax-10 1573  ax-9 1579  ax-4 1586  ax-16 1772  ax-ext 2043  ax-sep 3697  ax-nul 3705  ax-pr 3765  ax-un 4057
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3an 895  df-ex 1444  df-sb 1733  df-eu 1955  df-mo 1956  df-clab 2049  df-cleq 2054  df-clel 2057  df-ne 2181  df-ral 2275  df-rex 2276  df-reu 2277  df-rab 2278  df-v 2474  df-sbc 2648  df-dif 2793  df-un 2795  df-in 2797  df-ss 2801  df-nul 3070  df-if 3178  df-sn 3257  df-pr 3258  df-op 3260  df-uni 3421  df-br 3583  df-opab 3637  df-mpt 3638  df-id 3856  df-xp 4266  df-rel 4267  df-cnv 4268  df-co 4269  df-dm 4270  df-rn 4271  df-res 4272  df-ima 4273  df-fun 4274  df-fv 4280  df-ov 5356  df-iota 5762  df-0g 11866  df-mnd 12231  df-grp 12506
Copyright terms: Public domain